您好,欢迎访问

商机详情 -

安徽轴故障机理研究模拟实验台

来源: 发布时间:2024年11月09日

标准压电式加速度传感器三角剪切结构,基座应变小,温度瞬态响应低,敏感元件为高稳定的特种陶瓷或石英,灵敏度稳定性好。传感器采用两端 M5 螺孔设计,便于背对背标定。1.测量通道数量:四通道、八通道、十六通道、传感器同时数据信号采集。2.支持传感器类型:压电式传感器振动,噪声声级计,转速计(*四通道)、电压型输出传感器。3.数模转换器精度:24AD位。4.支持比较高采样频率:比较高100kHz/通道,多种量程范围可选。5.输入精度:相位:优于0.1度,幅值:优于0.1%。6.仪器比较高动态范围:110dB。故障机理研究模拟实验台的研发需要团队协作。安徽轴故障机理研究模拟实验台

故障机理研究模拟实验台

PT700在内转子驱动电机机座上设置有内转子驱动电机,内转子驱动电机通过主联轴器和内转轴连接,套在内转轴上的内转子左轮盘,内转子左支承结构,内转子右轮盘和内转子右支承结构沿中心轴线依次连接;套在外转轴上的外转子左支承结构,外转子左轮盘和外转子右轮盘沿中心轴线依次连接.本发明采用可调刚度的弹性支承,可实验支承刚度对双转子动力特性的影响;可以模拟航空发动机双转子质量不平衡,转子碰摩和支座松动等机械故障.转静件碰摩状态下的叶片振动载荷和振动特性测试分析,基于弹性基础的内外双转子故障模拟实验台,涉及航空发动机实验装置.本实验台的结构主要是:在外转轴内设置有内转轴,两者中心轴线重合,通过中介支承结构机重庆故障机理研究模拟实验台批发高速轴承故障机理研究模拟实验台。

安徽轴故障机理研究模拟实验台,故障机理研究模拟实验台

PT400mini便携式轴承齿轮实验台可用于振动测试仪器功能演示和旋转机器振动检测、分析和故障诊断培训演示。轻便的小尺寸,可快速模拟0-3000rpm转速下的机器运行,进行振动测量和分析主要技术参数通道数每模块8通道,可选配16通道/模块,通过以太网实现无限通道扩展连续采样速率比较高5kHz/通道桥路方式支持全桥、半桥、三线制1/4桥适用应变计电阻值(1)三线制1/4桥电阻范围:120Ω、350Ω程控切换;(2)半桥、全桥电阻范围:60Ω~20000Ω任意设定;供桥电压2VDC、5VDC、10VDC分档切换应变量程±50000με,**小分辨率0.5με应变示值误差±(0.2%red±2με)电压量程电压量程(8CH):满度值±10000mV、±5000mV、±500mV、±50mV;电压量程(16CH):满度值±5000mV、±500mV、±50mV;(±10000mV选配降压器)电压示值误差±0.2%F.S

航空发动机双转子系统叶片-机匣碰摩故障模拟,Faultsimulationofblade-casingrubbingfordual-rotorsystemofaero-engines叶片-机匣碰摩严重影响航空发动机的性能、可靠性及安全性。考虑叶片-机匣碰摩、轴承非线性、联轴器不对中及高低压转子不平衡,利用有限元法建立双转子系统的非线性动力学模型;然后利用模态综合法缩减系统自由度,数值求解降阶模型的非线性振动响应,分析叶片-机匣碰摩故障响应特征。数值与实验结果表明:航空发动机双转子系统为多激励非线性系统,系统振动响应频率成分复杂,包括高低压转轴频率、多倍频、组合频率及其他复杂频率;当叶尖间隙较大时,叶片-机匣碰摩可能为局部碰摩,故障特征频率为叶片通过频率及其倍频,并在叶片通过频率两侧存在高低压转轴频率的调制边频带;当叶尖间隙较小时,叶片-机匣碰摩可能发生全周碰摩,呈现出由干摩擦引起的强烈自激振动。研究结果可为航空发动机双转子系统的叶片-机匣碰摩故障诊断及叶尖间隙设计提供一定参考。介绍增速齿轮箱故障机理研究模拟实验台的组成部分。

安徽轴故障机理研究模拟实验台,故障机理研究模拟实验台

VALENIAN机理故障测试台主要功能:齿轮磨损、齿轮断齿、齿轮裂纹、齿轮缺齿的故障模拟仿真问题;静、动不平衡及悬臂转子不平衡,不对中,松动。轴承故障(外圈、内圈、滚动体、保持架、综合故障),不同转速下的振动特征频率识别;可以进行单面动平衡实验,以及敲击,启停机测试,还可以支持齿轮偏心、及共振等实际机器振动测试等;平台支持TCP/IP、UDP、ModBus、MQTT、HTTP、OPC、RS232/RS485等多种接口协议接入以及强大的WebAPI接口输出,兼容Windows、麒麟等主流操作系统平台,支持直接调用软件平台的3D模型、ODS振型、频谱图、伯德图等,为用户实现视频、GPS/BD、称重等系统集成以及多平台兼容打造良好的生态条件。故障机理研究模拟实验台的发展前景广阔。高校故障机理研究模拟实验台怎么做

故障机理研究模拟实验台的实验结果具有重要意义。安徽轴故障机理研究模拟实验台

针对以上问题,并根据轴承故障脉冲的周期性、冲击性以及与原始信号相关性的特点得到VMD参数组合的比较好Pareto解集,再利用综合评价指标评价选择比较好的参数组合方案,其次,信号分解并综合评价选取比较好IMF提取故障特征,***利用仿真信号和实际轴承振动信号分析,验证了所提方法的有效性。轴承出现故障后,运行过程中会产生周期性的冲击,其振动信号就越有序,信息熵值也就越小。VMD分解得到的模态分量中,信息熵值越小的模态分量,包含着越多的轴承故障信息,越能反映当前轴承的运行状态。安徽轴故障机理研究模拟实验台