您好,欢迎访问

商机详情 -

广西小学数学教学教具

来源: 发布时间:2024年05月29日

比例的基本性质

如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

合比性质

如果a/b=c/d,那么(a±b)/b=(c±d)/d

等比性质

如果a/b=c/d=…=m/n(b+d+…+n≠0),

那么(a+c+…+m)/(b+d+…+n)=a/b


相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

相似三角形判定定理:

1.两角对应相等,两三角形相似(ASA)

2.两边对应成比例且夹角相等,两三角形相似(SAS)

直角三角形被斜边上的**成的两个直角三角形和原三角形相似

判定定理3:三边对应成比例,两三角形相似(SSS)

相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 专业基础教育数学仪器生产供应商。广西小学数学教学教具

广西小学数学教学教具,数学教学教具

教具辅助教师讲解,提高教学质量:教具不仅是学生学习的工具,也是教师教学的得力助手。在数学课堂上,教师可以利用教具进行辅助教学,使讲解更加生动、形象。例如,在函数图像的教学中,教师可以使用函数图像生成器来展示各种函数的图像变化过程。通过动态演示,学生可以更加直观地理解函数的性质和应用。此外,一些交互式教具还能帮助学生进行自主学习和探究。比如,电子白板、数学软件等教具可以为学生提供丰富的学习资源和交互功能,使他们能够在教师的指导下进行个性化的学习。自贡数学教学教具配置小学数学各年级常用教学仪器。

广西小学数学教学教具,数学教学教具

量角器---画图用具,常见材质为塑料或铁质,可以根据需要画出所要的角度。常与圆规一起使用功能可以画角度、量角度、画垂直线、平行线、测倾斜度、垂直度、水平度,可以当内外直角拐尺,打开、合拢,可当长短直尺还能较确直观读出,并画出规定尺寸的圆寸量角器制造材料来源广,成本低,结构简单,便于制造,实用性强,应用市场量大,对接产方有极大的投资效益。为弥补量角器在使用上的单一性及携带和保管上的使用不方便,普遍采用一器多用的方式,使量角器具有灵活性和***性实用价值,结构简单,造型新颖独特,设计合理,从而提高工作效率,又体现了社会效益。

数学教学教具是用于辅助数学教学的工具和材料。它们具有以下特点:直观性:数学教学教具能够以视觉、听觉或触觉等方式呈现数学概念和原理,使学生能够更直观地理解和掌握数学知识。互动性:数学教学教具通常设计成可以与学生进行互动的形式,鼓励学生积极参与,提高学习的主动性和参与度。操作性:数学教学教具能够通过实际操作,让学生亲自动手进行数学实验或解决问题,培养学生的动手能力和解决问题的能力。多样性:数学教学教具种类繁多,包括几何模型、计算器、图表、拼图等,能够满足不同年龄和学习水平的学生的需求。小学数学教学仪器教具批发厂家。

广西小学数学教学教具,数学教学教具

勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法较多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的**重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,**早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。欢迎咨询!平方立方问题教学演示模型。河源中小学数学教学教具

专业中小学数学教学仪器供应商。广西小学数学教学教具

全等三角形判定定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等角的平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的后面,欢迎咨询!广西小学数学教学教具