为什么又这么冷呢?我能想到的一个答案是它太难了,它非常有挑战性。下面就来看一下它的技术难点。5非线性声学回声消除的技术难点,我从6个不同的维度比较了线性的和非线性这两种回声消除问题。个维度,系统传递函数。在线性系统里面,我们认为系统传递函数是一个缓慢时变的系统,我们可以通过自适应滤波的方式去逼近这个传递函数,来有效抑制回声。而在非线性系统里面,系统传递函数通常是快变、突变的,我们如果用线性的方法去逼近的话,会出现滤波器的更新速度,跟不上系统传递函数变化的速度,就会导致声学回声消除不理想。第二个维度是优化模型,在线性里面我们是有一套非常完备的线性优化模型,从目标函数的构建到系统优化问题的求解,整个脉络是很清晰的。而在非线性的系统里面,目前是缺少一种有效的模型来对它进行支撑的。接下来的四个维度对应4个问题,它们是线性回声消除领域普遍存在的4个难点问题,这些问题在非线性领域也同样存在。比如强混响问题,我们如果在一个小型会议室里开视频会议,那么声音会经过多次墙壁反射,带来很强的混响,混响的拖尾时间会很长。如果想抑制这样的强混响回声,就需要把线性滤波器的长度加长。
声学回声消除,其主要用于抑制产品本身发出的声音。电视声学回声处理算法
运用声学处理来控制回声和混响,当有某个房间或建造一个录音棚时,如出现下述问题,就需要进行声学处理:(1)在墙边拍一下手,然后可听到颤动回声。这是由于声音在硬的平行墙面之间的来回撞击而产生的。(2)录音棚有非常活跃的环境,诸如像一个车库或是混凝土结构的地下室之类,可以听到很多的房间混响。(3)录音棚体积很小。(4)从录音作品中可以听到外界的噪声。(5)低音吉他放大器和音箱的声音有隆隆声。(6)缺乏在数英尺之外作不拾取噪声或不拾取过量房间混响的拾音的自由度。(7)在传声器信号中可听到大量的泄漏声。一些泄漏的例子,如吉他传声器拾取了鼓声,或是由于铙镲传声器拾取了电吉他的声音。如果有上述情况出现,则可按如下的建议来改善录音室的声学状况。混响和回声是由于房间表面的声音反射引起的,因此,强吸声的表面会有助于化解这些问题。高频吸收如要吸收高频,可使用诸如多孔的褶皱(凹凸不平的)的泡沫垫材料。这些材料是高可燃性的,所以,要作阻燃处理。把它们钉住或粘贴在墙面上,或者把它们固定在框架上。从效果上看,使用厚的泡沫材料要比薄的好。装在墙上的,这取决于声音撞击到泡沫材料上的角度。在泡沫材料嵌板之间要留有一些空隙。
广东商显声学回声自抑制算法什么是非线性声学回声。
32.隔声实验室由两个相连的混响室组成,在两个混响室之间应有一个安装试件的洞口。33.质量定律对于隔声存在一个普遍的规律,即材料越重(面密度,或单位面积质量越大)隔声效果越好。对于单层密致匀实材料,面密度每增加一倍,隔声量在理论上增加6dB,这种规律即为质量定律。34.吻合谷声波接触隔声材料后,隔声材料除了垂直方向的受迫振动以外,还有沿着板面方向的受迫弯曲振动。在某个特定频率上,受迫弯曲振动将和板固有的自由弯曲振动发吻合,这时隔声材料就非常顺从地跟随入射声弯曲,造成声能大量地投射到另一侧去,形成隔声量的低谷,这种现象被称作吻合效应。35.平方反比定律在自由场(freefield)条件下,话筒或扬声器与音源之间的距离每增加一倍,声音的强度就会下降6分贝。36.哈斯效应如果有两个不同声源发出同样的声音,在同一时间以同样强度到达时,声音呈现的方向大致在两个声源之间;如两个同样的声源中的一个延时5~35ms,则感觉声音似乎都来自未延时的声源;如延迟时间在35~50ms时,延时的声源可被识别出来,但其方向仍在未经延时的声源方向;只有延迟时间超过50ms时,第二声源才能象清晰的回声般听到。这种现象就是哈斯效应。
这将不止产生一次的回声,而是多次规律的回声现象。AEC即AcousticEchoCancellation(声学回声消除)技术简称,该技术的出现旨在消除这种因远程网络会议所带来的回授现象,以遏制次回声产生所需的必要条件来遏制多次回声的出现。为什么要费那么大周折去抑制回声?这个话题应该不言而喻了。会议、语音扩声讲究的即是STI语音清晰度(可懂度),而回声是语言清晰度的比较大。设想踩脚跟式的语音信号传达到耳朵,听者难受,讲者费劲,对于这样的语音会议来说,那必将是一场灾难。我们把声学回声消除这个技术变成一张实体的插件(设备插卡),在系统中,为实现次回声过滤(过滤回声源则过滤多次回声)。这个技术应该插入在系统的哪个环节呢?我们不妨来找找系统中具备近乎相同/相似信号的一级进出环节。们并不难发现一组具备相似信号的输入输出环节。而AEC技术认为,在这里对回声下手是治根的办法!市面上有多种类的回声消除器,也有部分抑制器,其算法和解决办法各有不同,本文就不详细阐释了。须知,通过对具有相似性极高的输入、输出信号的比对,约掉这一具备相似信号的输出。我们把声学回声消除这个技术变成一张实体的插件(设备插卡)。
至于双讲恢复能力WebRTCAEC算法提供了{kAecNlpConservative,kAecNlpModerate,kAecNlpAggressive}3个模式,由低到高依次不同的抑制程度,远近端信号处理流程,NLMS自适应算法(上图中橙色部分)的运用旨在尽可能地消除信号d(n)中的线性部分回声,而残留的非线性回声信号会在非线性滤波(上图中紫色部分)部分中被消除,这两个模块是WebrtcAEC的模块。模块前后依赖,现实场景中远端信号x(n)由扬声器播放出来在被麦克风采集的过程中,同时包含了回声y(n)与近端信号x(n)的线性叠加和非线性叠加:需要消除线性回声的目的是为了增大近端信号X(ω)与滤波结果E(ω)之间的差异,计算相干性时差异就越大(近端信号接近1,而远端信号部分越接近0),更容易通过门限直接区分近端帧与远端帧。非线性滤波部分中只需要根据检测的帧类型,调节抑制系数,滤波消除回声即可。下面我们结合实例分析这套架构中的线性部分与非线性分。线性滤波线性回声y'(n)可以理解为是远端参考信号x(n)经过房间冲击响应之后的结果,线性滤波的本质也就是在估计一组滤波器使得y'(n)尽可能的等于x(n),通过统计滤波器组的比较大幅值位置index找到与之对齐远端信号帧,该帧数据会参与相干性计算等后续模块。
深入浅出 WebRTC AEC(声学回声消除)。电视声学回声处理算法
实现对整个声学回声路径的变化进行有效跟进。电视声学回声处理算法
以此来应对市面上绝大多数的移动设备。另外,线性滤波器虽然不具备调整延时的能力,但可以通过估计的index衡量当前信号的延时状态,范围为[0,kNormalNumPartitions],如果index处于作用域两端,说明真实延时过小或过大,会影响线性回声估计的效果,严重的会带来回声,此时需要结合固定延时与大延时检测来修正。非线性滤波非线性部分一共做了两件事,就是想尽千方百计干掉远端信号。(1)根据线性部分提供的估计的回声信号,计算信号间的相干性,判别远近端帧状态。(2)调整抑制系数,计算非线性滤波参数。非线性滤波抑制系数为hNl,大致表征着估计的回声信号e(n)中,期望的近端成分与残留的非线性回声信号y''(n)在不同频带上的能量比,hNl是与相干值是一致的,范围是[0,],通过图5(b)可以看出需要消除的远端部分幅度值也普遍在,如果直接使用hNl滤波会导致大量的回声残留。因此WebRTC工程师对hNl做了如下尺度变换,over_drive与nlp_mode相关,不同的抑制激进程度,drive_curve是一条单调递增的凸曲线,范围[]。由于中高频的尾音在听感上比较明显,所以他们设计了这样的抑制曲线来抑制高频尾音。我们记尺度变换的α=over_drive_scaling*drive_curve。
电视声学回声处理算法
深圳鱼亮科技有限公司专注技术创新和产品研发,发展规模团队不断壮大。目前我公司在职员工以90后为主,是一个有活力有能力有创新精神的团队。诚实、守信是对企业的经营要求,也是我们做人的基本准则。公司致力于打造***的智能家居,语音识别算法,机器人交互系统,降噪。公司凭着雄厚的技术力量、饱满的工作态度、扎实的工作作风、良好的职业道德,树立了良好的智能家居,语音识别算法,机器人交互系统,降噪形象,赢得了社会各界的信任和认可。