语音识别(SpeechRecognition)是以语音为研究对象,通过语音信号处理和模式识别让机器自动识别和理解人类的语音。除了传统语音识别技术之外,基于深度学习的语音识别技术也逐渐发展起来。本文对广义的自然语言处理应用领域之一的语音识别进行一次简单的技术综述。概述自动语音识别(AutomaticSpeechRecognition,ASR),也可以简称为语音识别。语音识别可以作为一种广义的自然语言处理技术,是用于人与人、人与机器进行更顺畅的交流的技术。语音识别目前已使用在生活的各个方面:手机端的语音识别技术,例如,苹果的siri;智能音箱助手,例如,阿里的天猫精灵,还有诸如一系列的智能语音产品等等。为了能够更加清晰的定义语音识别的任务,先来看一下语音识别的输入和输出都是什么。大家都知道,声音从本质是一种波,也就是声波,这种波可以作为一种信号来进行处理,所以语音识别的输入实际上就是一段随时间播放的信号序列,而输出则是一段文本序列。语音识别的输入与输出。语音识别的输入与输出将语音片段输入转化为文本输出的过程就是语音识别。一个完整的语音识别系统通常包括信息处理和特征提取、声学模型、语言模型和解码搜索四个模块。
语音技术可以用来理解客户,而不考虑语法、口音或背景噪音。辽宁语音服务标准
全球高精度模拟和数字信号处理元件厂商CirrusLogic(纳斯达克代码:CRUS)宣布推出面向Alexa语音服务(AVS)的开发套件,该套件适用于智能扬声器和智能家居应用,包括语音控制设备、免提便携式扬声器和网络扬声器等。面向AmazonAVS的语音采集开发套件采用CirrusLogic的IC和软件设计,帮助制造商将Alexa新产品迅速推向市场,即使在嘈杂的环境和音乐播放过程中,这些新品也可实现高精度唤醒词触发和命令解释功能。面向AmazonAVS的低功耗语音采集开发套件包括采用了CirrusLogicCS47L24智能编解码器和CS7250B数字MEMS麦克风的参考板,以及进行语音控制、噪声抑制和回声消除的SoundClear®算法。完整的语音采集参考设计进一步增强了“Alexa”唤醒词检测和音频捕获功能在真实条件下的实现,即使是在嘈杂环境下中等距离范围内,用户也能够可靠地中断高音音乐或者Alexa回应播放。智能编解码器使用一个片上高性能数模转换器(DAC)以及一个两瓦单声道扬声器驱动器,实现高保真音频播放。Alexa语音服务总监PriyaAbani表示:“我们很高兴能够与CirrusLogic一起帮助OEM厂商在更多的智能扬声器和其他各种音频设备中应用Alexa。辽宁语音服务标准特征提取工作将声音信号从时域转换到频域,为声学模型提供合适的特征向量。
处理器的输入端与指令转换模块的输出端电连接,所述输入/输出模块的输出端电连接有程序选择模块,且程序选择模块的输出端与指令转换模块的输入端电连接,所述电源模块的输出端与处理器的输入端电连接,且处理器与信息传递模块之间双向电连接,所述后台终端上电连接有信息处理模块,且后台终端与信息处理模块之间双向电连接。所述输入/输出模块包括视频单元、按键单元和语音单元,所述视频单元、按键单元和语音单元之间设置,且视频单元的输出端与识别模块的输入端电连接。所述视频单元连接有显示屏,所述语音单元包括扬声器与麦克风,且扬声器与麦克风之间并联设置。所述现场信息反馈单元包括可变交通标志牌和led路况显示屏,所述信心传递模块包括信息发送单元和信息接收单元,所述信息发送单元与信息接收单元之间双向电连接。所述信息传递模块与服务器之间无线连接,所述服务器与后台终端之间无线连接,且后台终端与信息传递模块之间通过服务器无线连接。所述后台终端包括人工服务和自助服务,所述人工服务与自助服务均与后台终端之间双向电连接。与现有技术相比,本发明具有如下有益效果:该智能语音服务交互系统,通过这里的指令系统有建立一个常用的语音数据库。
游戏语音(GameVoice)是支持多样玩法、***覆盖游戏应用场景的语音服务。支持实时语音、语音消息、语音转文字,是自动建立组队语音房间,PVP玩法的必备。并针对游戏场景优化,低延迟、低耗能、低码率、流量小,兼容数百款安卓机型,保障比较好游戏语音体验。覆盖游戏中常用的语音功能:实时语音、语音消息、语音识别,超小SDK,游戏嵌入SDK,打包后*增加1.5M。玩家可快速录制并发送一段语音消息。针对游戏场景优化,过滤掉不必要的噪音,使流量小、延迟低、耗能低。延迟低、流量小、***的回声消除效果;码率可调整,满足不同需求场景;低耗能,Android单核700MHz主频CPU峰值小于3%。如果语音服务订阅所在区域没有于训练的硬件,我们建议你完全删除音频并留下文本。
而能对广大的电话用户开放。统一消息融合了语音和数据服务,从而使电信运营商在保护已有投资的前提下进入数据业务市场。语音电话簿:语音电话簿可以帮助用户通过电话或手机等通信设备,呼叫存储在统一邮箱中的联系人姓名,从而实现拨打联系人的移动电话、住宅电话或者办公电话。电话簿存储在统一邮箱中,拥有超过500个联系人的信息存储量,真正实现了海量电话簿;不用再费力去记忆、查询各种电话号码,只需对电话说出"拨打XXX的移动电话""拨打XXX的办公电话""拨打XXX的家庭电话",系统会自动为用户接通XXX的电话。通过各种通讯设备以语音呼叫联系人,高达97%的语音识别准确率,通过语音呼叫进行检索,准确、快捷的为用户接通联系人的电话!省时省力的语音电话簿联系方式,查询和拨打各种电话都将不再是一件难事,不仅能够为通信服务商提升话费收入,而且增加了用户对服务提供商的忠诚度和依赖性。把要分析的信号从原始信号中提取出来。辽宁语音服务标准
语音服务在单个 Azure 订阅统合了语音转文本、文本转语音以及语音翻译功能。辽宁语音服务标准
马尔可夫链的每一个状态上都增加了不确定性或者统计分布使得HMM成为了一种双随机过程。HMM的一个时间演变结构所示。隐马尔可夫模型HMM的主要内容包括参数特征、仿真方法、参数的极大似然估计、EM估计算法以及维特比状态解码算法等细节知识,本将作为简单综述这里不做详细的展开。基于深度学习的声学模型一提到神经网络和深度学习在语音识别领域的应用,可能我们的反应就是循环神经网络RNN模型以及长短期记忆网络LSTM等。实际上,在语音识别发展的前期,就有很多将神经网络应用于语音识别和声学模型的应用了。早用于声学建模的神经网络就是普通的深度神经网络(DNN),GMM等传统的声学模型存在音频信号表征的低效问题,但DNN可以在一定程度上解决这种低效表征。但在实际建模时,由于音频信号是时序连续信号,DNN则是需要固定大小的输入,所以早期使用DNN来搭建声学模型时需要一种能够处理语音信号长度变化的方法。一种将HMM模型与DNN模型结合起来的DNN-HMM混合系统颇具有效性。DNN-HMM框架,HMM用来描述语音信号的动态变化,DNN则是用来估计观察特征的概率。在给定声学观察特征的条件下。我们可以用DNN的每个输出节点来估计HMM某个状态的后验概率。
辽宁语音服务标准