该程序被处理器执行时实现上述方法的步骤。本发明实施例的有益效果在于:语音服务端从物联网主控设备获取语音控制请求,通过语音控制请求中的目标设备用户信息来调用相应的设备列表,通过语音控制请求中的目标设备区域配置信息从该设备列表中确定对应区域的受控设备信息,进而对该受控设备信息所指示的物联网受控设备进行操控,因此能够对用户下不同区域的受控设备分别进行语音控制,拓展了语音控制方案的应用场景。另外,还不需要用户语音消息中包括区域信息,提高了用户的语音操控体验。说明为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用作一简单地介绍,显而易见地,下面描述是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,根据本发明实施例的应用于语音服务端的物联网设备语音控制方法的一示例的流程;根据本发明实施例的物联网设备语音控制方法的一示例的信号流程;根据本发明实施例的物联网设备语音控制方法的一示例的信号流程;根据本发明实施例的用于确定设备列表的过程的一示例的流程。使用语音服务的语音助理能够支持开发人员为其应用程序和体验创建自然的、类似于人类的对话界面。辽宁无限语音服务供应
本发明涉及语音服务交互系统领域,特别涉及一种智能语音服务交互系统。背景技术:随着语音技术的不断发展,近年来语音识别及控制技术迅速崛起,电视、电脑等智能终端均可通过语音控制进行相应的操作,提高了用户和智能终端之间的交互体验和交互效率,有效的弥补传统的手动输入操作的不足;现有的交通管理系统中,使用时不能适时管理,使用时存在应的局限性,影响交通管理系统的使用效果;现有的语音服务中,用户拨打电信、银行等的客户电话,一般会通过ivr交互,是语音告诉打电话的人比如:1、重置密码,2、查询余额,……返回上一级菜单等等,有时候用户经常会听不清,或者没听到,又或者语音速度太慢了,语音播报的选择菜单又特别的多,按顺序播放,用户永远不知道有多少层菜单,还有自己要选择的菜单在第几层等等问题。技术实现要素:本发明的主要目的在于提供一种智能语音服务交互系统,可以有效解决背景技术中的问题。为实现上述目的,本发明采取的技术方案为:一种智能语音服务交互系统,包括处理器、服务器和后台终端,所述处理器上电连接有输入/输出模块、指令转换模块、识别模块、电源模块、和信息传递模块,所述输入/输出模块与处理器中间双向电连接。陕西无限语音服务供应语音助手,更懂您的语音服务。
语音识别(SpeechRecognition)是以语音为研究对象,通过语音信号处理和模式识别让机器自动识别和理解人类的语音。除了传统语音识别技术之外,基于深度学习的语音识别技术也逐渐发展起来。本文对广义的自然语言处理应用领域之一的语音识别进行一次简单的技术综述。概述自动语音识别(AutomaticSpeechRecognition,ASR),也可以简称为语音识别。语音识别可以作为一种广义的自然语言处理技术,是用于人与人、人与机器进行更顺畅的交流的技术。语音识别目前已使用在生活的各个方面:手机端的语音识别技术,例如,苹果的siri;智能音箱助手,例如,阿里的天猫精灵,还有诸如一系列的智能语音产品等等。为了能够更加清晰的定义语音识别的任务,先来看一下语音识别的输入和输出都是什么。大家都知道,声音从本质是一种波,也就是声波,这种波可以作为一种信号来进行处理,所以语音识别的输入实际上就是一段随时间播放的信号序列,而输出则是一段文本序列。语音识别的输入与输出。语音识别的输入与输出将语音片段输入转化为文本输出的过程就是语音识别。一个完整的语音识别系统通常包括信息处理和特征提取、声学模型、语言模型和解码搜索四个模块。
DFCNN先对时域的语音信号进行傅里叶变换得到语音的语谱,DFCNN直接将一句语音转化成一张像作为输入,输出单元则直接与终的识别结果(例如,音节或者汉字)相对应。DFCNN的结构中把时间和频率作为图像的两个维度,通过较多的卷积层和池化(pooling)层的组合,实现对整句语音的建模。DFCNN的原理是把语谱图看作带有特定模式的图像,而有经验的语音学**能够从中看出里面说的内容。DFCNN结构。DFCNN模型就是循环神经网络RNN,其中更多是LSTM网络。音频信号具有明显的协同发音现象,因此必须考虑长时相关性。由于循环神经网络RNN具有更强的长时建模能力,使得RNN也逐渐替代DNN和CNN成为语音识别主流的建模方案。例如,常见的基于seq2seq的编码-解码框架就是一种基于RNN的模型。长期的研究和实践证明:基于深度学习的声学模型要比传统的基于浅层模型的声学模型更适合语音处理任务。语音识别的应用环境常常比较复杂,选择能够应对各种情况的模型建模声学模型是工业界及学术界常用的建模方式。但单一模型都有局限性。HMM能够处理可变长度的表述,CNN能够处理可变声道。RNN/CNN能够处理可变语境信息。声学模型建模中,混合模型由于能够结合各个模型的优势。访问语音服务是需要账号登陆的吗?
ForresterResearch在其对2021年的前列客户服务预测中指出,“随着移情成为中心舞台,语音将成为服务的渠道。”在2020年,Forrester的公司客户告诉分析师,那些因失业而需要修改公用事业、和其他关键服务支付计划的客户已经将通话量推高了50%。虽然交互式语音应答(IVR)系统通过语音识别技术的改进,在理解口语方面已经有了很大的进步,但传统的IVR系统笨重,自助自动化程度很低,高达80%的交互都交给了服务座席。当我与领导们谈论CX转型时,常被忽视的是语音技术在客户服务和销售中的作用。传统上,IVR是一个联络中心的面孔,绝大多数被用作决策树,将呼叫路由到合适的座席。相比之下,数字和消息传递技术不仅被用于通过聊天和消息传递将客户连接到联络中心座席,而且还通过会话式人工智能机器人驱动自动化。后者在一些公司引起了争论,要求删除电话号码,将部分或全部客户转移到信息渠道,通过自动化降低联络中心的成本。然而,期望客户从语音转向数字是不现实的。问题不在于如何让客户远离语音,而在于如何利用语音技术的进步与数字技术相结合,提高对口语的理解和处理能力,从而推动自助服务。根据[24],83%的公司计划在不久的将来将语音与数字渠道相结合。
还不需要用户语音服务消息中包括区域信息,提高了用户的语音操控体验。湖北光纤数据语音服务
如果语音服务订阅所在区域没有于训练的硬件,我们建议你完全删除音频并留下文本。辽宁无限语音服务供应
则可以通过减少数据集内的音频量或完全删除音频并留下文本,来快速缩短训练时间。如果语音服务订阅所在区域没有于训练的硬件,我们强烈建议你完全删除音频并留下文本。美国英语(en-US)英语音频的人为标记的听录必须以纯文本形式提供,使用ASCII字符。避免使用拉丁语-1或Unicode标点字符。从文字处理应用程序中复制文本或从网页中擦除数据时,常常会无意中添加这些字符。如果存在这些字符,请务必将其更新为相应的ASCII替代字符。美国英语的文本规范化文本规范化是指将字词转换为在训练模型时使用的一致格式。某些规范化规则会自动应用到文本,但我们建议你在准备人为标记的听录数据时遵循以下准则:将缩写写成字词。将非标准数字字符串写成字词(例如会计术语)。应按照发音听录非字母字符或混合字母数字字符。不应编辑可以作为字词发音的缩写(例如,“radar”、“laser”、“RAM”或“NATO”)。将发音的缩写写成单独的字母,每个字母用单个空格分开。如果使用音频,请将数字听录为与音频匹配的字词(例如“101”可以读作“oneohone”或“onehundredandone”)。请避免将字符、单词或词组重复三次以上,例如“yeahyeahyeahyeah”。语音服务可能会删除具有此类重复的行。
辽宁无限语音服务供应