基于深度学习的人脸识别方法,以稀疏自编码神经网络和softmax分类器构建深度层次网络为例,并对该深度层次网络进行了训练。为了验证深度学习方法的人脸识别率,分别在ORL、Yale、Yale-B以及PERET人脸数据库上做算法测评,测试内容有softmax分类器人脸识别、深度网络顶层微调算法和深度网络整体微调算法三个方面。对各个数据库的人脸图像进行的预处理有直方图均衡化、非局部均值算法、小波变换处理、Retinex图像增强算法以及同态滤波算法。另外,使用深度网络整体微调算法对低分辨率问题做了进一步验证。然后利用matlab GUI编程实现一个基于稀疏自编码神经网络和softmax分类器的人脸识别系统,该系统的深度层次网络的层次和节点可调,且具备完整的识别功能。慧视RK3399板卡可以用于大型公共停车场。辽宁目标跟踪图像识别模块
智慧出行本次大运会,智能无人驾驶的公交车也相继亮相投用。该车配有8个固态激光雷达及多类型传感器,感知范围为200米,可以做到360度无盲区,响应时间为0.1秒,比人类经验丰富的驾驶员反应还快好几倍,能够安全高效处理大运村赛事期间车多、人多的复杂交通状况。随着技术的不断革新,未来还将会出现更多的智能服务,为运动员和游客提供更加便捷舒适的环境。无人驾驶的汽车通过图像识别来判断周围环境的变化,能够很到底避免出现事故,慧视AI算法正是这些无人设备的“眼睛”。安徽车载辅助图像识别模块厂家RK3588是小型化国产板卡。
为了制造一个的汽车零部件,人们需要和机器协作来采购原材料,评估其质量,将它们运输到工厂进行加工,通过质量检查的合格产品会离开工厂,然后零售商或终端用户会收到它们。无论这个产品是在运输中,甚至是还没有组装,机器视觉均提供了一种自动处理它的程序。它提高了各个部门的效率,如装配,并保持更高和更一致的质量水平。有些应用程序很简单,比如在仓库地板上画一条线,让无人驾驶的车辆安全地不越线行驶。其他的机器视觉应用甚至更加复杂,即使是简单的例子也有改变游戏规则的可能。在工业世界中,机器视觉的一些典型例子曾经被是认为很难或不可能外包给机器人的。正如前文提到的,在涉及践行成本、商誉和客户方面,在仓库中拣货就是一个涉及高失误风险的过程,产品损坏、物品位置和SKU的细微变化均有可能造成失误,因此采用机器学习进行货物拣选是一种上上策。
RK3399图像处理板是我司自主研发的目标跟踪板,该板卡采用国产高性能CPU,搭载自研目标检测及跟踪算法。具有体积小、功耗低、目标检测准确、跟踪稳定等优点。用在无人机领域,不会过多增加无人机载重负担。软件方面,在此基础上定制板卡的处理能力,其中:可见光通道图像处理能力:1920×1080不低于30Hz红外通道图像处理能力:640×512不低于50Hz图像跟踪模块在对目标尺寸不小于3×3像素、目标对比度不小于10%,双振幅不小于2/3视场,作往复匀速直线运动的模拟目标进行跟踪时,其跟踪速度在水平方向和垂直方向均不小于1.5视场/s。对圆周半径不小于1/3视场,作匀速圆周运动的模拟目标进行跟踪时,其跟踪速度应不小于1.5周/s。小识别像素不低于15×15像素,识别频率≥10Hz。并且植入视频压缩存储功能,高清视频存储能力不低于1h,以满足特殊需求。在硬件方面,针对对于索尼7520定制1路LVDS的输入接口,针对于红外COIN612定制1路CVBS输入接口,视频输出接口则采用H.264编码。RV1126图像处理板是国产的吗?
在人脸识别领域,传统的人脸特征都是人工选取,例如SIFT,HOG等等,但是人工选取特征是一件非常费力事情,并且选取特征的好坏很大程度上依赖于经验和运气,而深度学习是一种无监督学习自动学习特征的方法,可以更好的表达样本。人脸识别以其所具有的非侵入性、便捷性、安全性等特性拥有着广阔的应用前景和科研价值,因此使用深度学习方法的对人脸识别进行研究,可以在光照、表情、姿态以及低分辨率等问题进行改进。成都慧视的AI识别算法也能根据不断学习以获得更好的识别能力。RV1126是纯国产化图像处理板。辽宁目标跟踪图像识别模块研发
RV1126图像处理板的目标识别能力突出。辽宁目标跟踪图像识别模块
大数据和机器学习让计算机变得特别聪明,以至于使计算机能够在某些领域很大程度的超过人类的极限能力,比如谷歌AlphaGo战胜了李世石,而人工智能的目的不只是让计算机和人类下下棋而已,可以说未来几十年将面临由大数据带来的智能变化,机器会获得越来越先进的能力。但实际上,人工智能的应用范围博大精深,繁冗复杂,在每一个垂直领域的应用都需要克服难以想象的障碍。所以,我们先拆分大脑的功能,让机器一点点实现智能化。人的大脑需要借助各种感官,如眼睛、耳朵等,感知外界信息,然后进行判断,这其中用机器来代替人眼来做测量跟判断的动作,称为机器视觉,机器视觉是人工智能学科中发展的**为快速的分支,而当今大家熟知的人脸识别技术就是机器视觉富有挑战性的课题之一。辽宁目标跟踪图像识别模块