您好,欢迎访问

商机详情 -

吉林语音识别率

来源: 发布时间:2023年12月20日

    取距离近的样本所对应的词标注为该语音信号的发音。该方法对解决孤立词识别是有效的,但对于大词汇量、非特定人连续语音识别就无能为力。因此,进入80年代后,研究思路发生了重大变化,从传统的基于模板匹配的技术思路开始转向基于统计模型(HMM)的技术思路。HMM的理论基础在1970年前后就已经由Baum等人建立起来,随后由CMU的Baker和IBM的Jelinek等人将其应用到语音识别当中。HMM模型假定一个音素含有3到5个状态,同一状态的发音相对稳定,不同状态间是可以按照一定概率进行跳转;某一状态的特征分布可以用概率模型来描述,使用***的模型是GMM。因此GMM-HMM框架中,HMM描述的是语音的短时平稳的动态性,GMM用来描述HMM每一状态内部的发音特征。基于GMM-HMM框架,研究者提出各种改进方法,如结合上下文信息的动态贝叶斯方法、区分性训练方法、自适应训练方法、HMM/NN混合模型方法等。这些方法都对语音识别研究产生了深远影响,并为下一代语音识别技术的产生做好了准备。自上世纪90年代语音识别声学模型的区分性训练准则和模型自适应方法被提出以后,在很长一段内语音识别的发展比较缓慢,语音识别错误率那条线一直没有明显下降。DNN-HMM时代2006年。语音识别的许多方面已经被一种叫做长短期记忆 (LSTM)的深度学习方法所取代。吉林语音识别率

    另一方面,与业界对语音识别的期望过高有关,实际上语音识别与键盘、鼠标或触摸屏等应是融合关系,而非替代关系。深度学习技术自2009年兴起之后,已经取得了长足进步。语音识别的精度和速度取决于实际应用环境,但在安静环境、标准口音、常见词汇场景下的语音识别率已经超过95%,意味着具备了与人类相仿的语言识别能力,而这也是语音识别技术当前发展比较火热的原因。随着技术的发展,现在口音、方言、噪声等场景下的语音识别也达到了可用状态,特别是远场语音识别已经随着智能音箱的兴起成为全球消费电子领域应用为成功的技术之一。由于语音交互提供了更自然、更便利、更高效的沟通形式,语音必定将成为未来主要的人机互动接口之一。当然,当前技术还存在很多不足,如对于强噪声、超远场、强干扰、多语种、大词汇等场景下的语音识别还需要很大的提升;另外,多人语音识别和离线语音识别也是当前需要重点解决的问题。虽然语音识别还无法做到无限制领域、无限制人群的应用,但是至少从应用实践中我们看到了一些希望。本篇文章将从技术和产业两个角度来回顾一下语音识别发展的历程和现状,并分析一些未来趋势,希望能帮助更多年轻技术人员了解语音行业。内蒙古语音识别文字在语音识别中,丰富的样本数据是推动系统性能快速提升的重要前提。

    行业的发展速度反过来会受限于平台服务商的供给能力。跳出具体案例来看,行业下一步发展的本质逻辑是:在具体每个点的投入产出是否达到一个普遍接受的界限。离这个界限越近,行业就越会接近滚雪球式发展的临界点,否则整体增速就会相对平缓。不管是家居、酒店、金融、教育或者其他场景,如果解决问题都是非常高投入并且长周期的事情,那对此承担成本的一方就会犹豫,这相当于试错成本过高。如果投入后,没有可感知的新体验或者销量促进,那对此承担成本的一方也会犹豫,显然这会影响值不值得上的判断。而这两个事情,归根结底都必须由平台方解决,产品方或者解决方案方对此无能为力,这是由智能语音交互的基础技术特征所决定。从技术来看,整个语音交互链条有五项单点技术:唤醒、麦克风阵列、语音识别、自然语言处理、语音合成,其它技术点比如声纹识别、哭声检测等数十项技术通用性略弱,但分别出现在不同的场景下,并会在特定场景下成为关键。看起来关联的技术已经相对庞杂,但切换到商业视角我们就会发现,找到这些技术距离打造一款体验上佳的产品仍然有绝大距离。所有语音交互产品都是端到端打通的产品,如果每家厂商都从这些基础技术来打造产品。

  

    而解决后者则更像应用商店的开发者。这里面蕴含着巨大的挑战和机遇。在过去功能型操作系统的打造过程中,国内的程序员们更多的是使用者的角色,但智能型操作系统虽然也可以参照其他,但这次必须自己来从头打造完整的系统。(国外巨头不管在中文相关的技术上还是内容整合上事实上都非常薄弱,不存在国内市场的可能性)随着平台服务商两边的问题解决的越来越好,基础的计算模式则会逐渐发生改变,人们的数据消费模式会与不同。个人的计算设备(当前主要是手机、笔记本、Pad)会根据不同场景进一步分化。比如在车上、家里、工作场景、路上、业务办理等会根据地点和业务进行分化。但分化的同时背后的服务则是统一的,每个人可以自由的根据场景做设备的迁移,背后的服务虽然会针对不同的场景进行优化,但在个人偏好这样的点上则是统一的。人与数字世界的接口,在现在越来越统一于具体的产品形态(比如手机),但随着智能型系统的出现,这种统一则会越来越统一于系统本身。作为结果这会带来数据化程度的持续加深,我们越来越接近一个数据化的世界。总结从技术进展和产业发展来看,语音识别虽然还不能解决无限制场景、无限制人群的通用识别问题。语音识别可以作为一种广义的自然语言处理技术,是用于人与人、人与机器进行更顺畅的交流的技术。

    亚马逊的Echo音箱刚开始推出的两三年,国内的智能音箱市场还不温不火,不为消费者所接受,因此销量非常有限。但自2017年以来,智能家居逐渐普及,音箱市场开始火热,为抢占语音入口,阿里巴巴、百度、小米、华为等大公司纷纷推出了各自的智能音箱。据Canalys报告,2019年第1季度中国市场智能音箱出货量全球占比51%,超过美国,成为全球*大的智能音箱市场。据奥维云网(AVC)数据显示,2019年上半年中国智能音箱市场销量为1556万台,同比增长233%。随着语音市场的扩大,国内涌现出一批具有强大竞争力的语音公司和研究团队,包括云知声、思必驰、出门问问、声智科技、北科瑞声、天聪智能等。他们推出的语音产品和解决方案主要针对特定场景,如车载导航、智能家居、医院的病历输入、智能客服、会议系统、证券柜台业务等,因为采用深度定制,识别效果和产品体验更佳。在市场上获得了不错的反响。针对智能硬件的离线识别,云知声和思必驰等公司还研发出专门的语音芯片,进一步降低功耗,提高产品的性价比。在国内语音应用突飞猛进的同时,各大公司和研究团队纷纷在国际学术会议和期刊上发表研究成果。2015年,张仕良等人提出了前馈型序列记忆网络。在另一个视频中走得快,或者即使在一次观察过程中有加速和减速,也可以检测到行走模式的相似性。四川语音识别系统

大数据与深度神经网络时代的到来,语音识别技术取得了突飞猛进的进步。吉林语音识别率

    LSTM通过输入门、输出门和遗忘门可以更好的控制信息的流动和传递,具有长短时记忆能力。虽然LSTM的计算复杂度会比DNN增加,但其整体性能比DNN有相对20%左右稳定提升。BLSTM是在LSTM基础上做的进一步改进,考虑语音信号的历史信息对当前帧的影响,还要考虑未来信息对当前帧的影响,因此其网络中沿时间轴存在正向和反向两个信息传递过程,这样该模型可以更充分考虑上下文对于当前语音帧的影响,能够极大提高语音状态分类的准确率。BLSTM考虑未来信息的代价是需要进行句子级更新,模型训练的收敛速度比较慢,同时也会带来解码的延迟,对于这些问题,业届都进行了工程优化与改进,即使现在仍然有很多大公司使用的都是该模型结构。图像识别中主流的模型就是CNN,而语音信号的时频图也可以看作是一幅图像,因此CNN也被引入到语音识别中。要想提高语音识别率,就需要克服语音信号所面临的多样性,包括说话人自身、说话人所处的环境、采集设备等,这些多样性都可以等价为各种滤波器与语音信号的卷积。而CNN相当于设计了一系列具有局部关注特性的滤波器,并通过训练学习得到滤波器的参数,从而从多样性的语音信号中抽取出不变的部分。吉林语音识别率

扩展资料

语音识别热门关键词

语音识别企业商机

语音识别行业新闻

推荐商机