实施例一:待分析图像为上述类图像,即待分析图像为至少包含当前帧图像的目标防护舱的图像:则上述步骤s304,包括如下步骤f1-f2:步骤f1:将待分析图像输入到预设的场景图像检测模型中,得到场景图像检测模型输出的检测结果;步骤f2:基于场景图像检测模型输出的检测结果,确定关于目标防护舱的事件检测结果;其中,由于待分析图像为目标防护舱的场景图像,则在本实施例一中,所采用的检测模型即为预设的场景图像检测模型,且用于训练该场景图像检测模型的各个样本图像组中所包括的图像可以称为场景图像。需要说明的是,场景图像检测模型为:采用各个样本图像组和每个样本图像组的事件检测结果所训练得到的模型,且每一样本图像组中的图像与待分析图像的图像数量相同,各个样本图像组中的图像为:所采集到的关于防护舱的图像。具体的,当待分析图像为:当前帧图像和当前帧图像之前的连续m帧图像的多张图像,则场景图像检测模型为:采用各个样本图像组和每个样本图像组的事件检测结果所训练得到的模型,且每一样本图像组中包括m+1帧场景图像。其中,针对至少一个防护舱,在该防护舱中发生各类事件时,采集m+1帧关于该防护舱的图像,这样。语音关键事件检测有什么注意事项?欢迎来电咨询!江西无限语音关键事件检测服务标准
电子设备在上述步骤s304中得到的事件检测结果可以为:关于未发生异常事件的结果,即目标防护舱内未发生异常情况;相对应的,电子设备在上述步骤s304中得到的事件检测结果也可以为:关于发生异常事件的结果,即目标防护舱内发生异常情况。可选的,一种具体实现方式中,上述事件检测结果为:关于未发生异常事件的结果。具体的,当事件检测结果为:关于未发生异常事件的结果时,则在上述步骤s304中,上述检测模型可以直接输出:未发生异常事件,这样,电子设备便可以确定目标防护舱内未发生异常事件。可选的,另一种具体实现方式中,上述事件检测结果为:关于发生异常事件的结果。具体的,当事件检测结果为:关于发生异常事件的结果时,则在上述步骤s304中,上述检测模型可以直接输出:发生异常事件,这样,电子设备便可以确定目标防护舱内发生异常事件。显然,在上述实现方式中,电子设备能够确定目标防护舱内是否发生异常事件,而不能确定当发生异常事件时,该异常事件的事件类型。因此,为了便于监控人员能够有针对性地对防护舱内所发生的异常事件进行处理,降低用户的人身伤害和财产损失,电子设备不但可以检测目标防护舱内是否发生异常事件。重庆量子语音关键事件检测供应语音关键事件检测和摄像头有联系吗?欢迎来电咨询!
在清单中,LayerUI的installUI()方法调用setLayerEventMask()检测鼠标移动事件,它又调用eventDispatched()方法返回结果。这个方法首先调用()方法确定鼠标移动事件相对于层的坐标位置。接下来这个方法通过检查它的坐标是否落在围绕UI中心的一个矩形区域内,检测鼠标指针是否移到印记文本上方,如果坐标刚好落在这个矩形区域内,印记文本的颜色就变为淡红色,除此以外,印记文本的颜色就恢复为蓝色。显示了鼠标移到印记文本上方前后的颜色变化。鼠标指针移到文本上方时,重新绘制文本颜色给用户一个不刺眼的提示小结JLayer对自定义绘制和事件检测的支持让你可以改进UI的各个组件,你可以将这个Swing组件和半透明及任意形状窗口特性结合起来使用,让你可以设计出更有趣的用户界面。
第二类图像中各个图像均为:基于每两帧连续的关于目标防护舱且包括目标对象的图像获取的光流图。具体的,在本实现方式中,第二类图像为:包括光流图和光流图之前的连续n帧光流图的多张图像;其中,n为正整数;或者,第二类图像为:光流图。也就是说,在本实现方式中,电子设备可以将所获得的光流图确定为待分析图像;此外,在获取到光流图后,电子设备可以判断光流图之前的连续n帧光流图是否均是基于每两帧连续的关于目标防护舱且包括目标对象的图像获取的,当判断结果为是时,电子设备也可以将包括光流图和该连续n帧光流图的多张图像确定为待分析图像。这样,用于确定当前时刻,关于目标防护舱的事件检测结果的待分析图像为多张,可以更充分地反映目标防护舱中用户的运动变化情况,进而提高事件检测的准确率。其中,n可以为任一正整数,例如,5,10等。基于上述对步骤s304中的说明中,对检测模型模型的描述内容,可以确定不同类型和数量的待分析图像,所利用的检测模型不同。进一步的,针对不同的待分析图像,则上述步骤s304的实现方式不同。下面,针对不同类型和数量的待分析图像,对上述步骤s304的具体执行方式,以及待分析图像与检测模型之间的对应关系进行举例说明。语音关键事件检测就找鱼亮科技,服务体系完善!
确定当前时刻,关于目标防护舱的事件检测结果。需要说明的是,电子设备可以通过多种方式执行上述步骤f23,对此本发实施例不作具体限定。为了行文清晰,后续对上述步骤f23的具体实现方式进行举例说明。显然,在本实施例三中,采用多种数据来确定检测关于目标防护舱的事件检测结果,使得到的事件检测结果更可靠,且具有说服力,从而可以提高对防护舱内用户出现异常事件的检测准确率。其中,由于类图像可能为:当前帧图像和当前帧图像之前的连续m帧图像的多张图像,也可能为:当前帧图像;第二类图像可能为:包括光流图和光流图之前的连续n帧光流图的多张图像,也可能为:光流图。因此,在本实施例三中,待分析图像和辅助图像,以及分别对应的场景图像检测模型和光流图检测模型,也可能存在多种情况。具体的:种情况:待分析图像为:当前帧图像和当前帧图像之前的连续m帧图像的多张图像;场景图像检测模型为:采用各个样本图像组和每个样本图像组的事件检测结果所训练得到的模型,且每一样本图像组中包括m+1帧场景图像;辅助图像为:包括光流图和光流图之前的连续n帧光流图的多张图像。语音关键事件检测的好处有哪些?欢迎咨询!江西电子类语音关键事件检测供应
语音关键事件检测和摄像头有联系吗?江西无限语音关键事件检测服务标准
使用自注意力机制对获得的每个span的表示w2进行计算,得到每个span的新的语义表示w3;对所述新的语义表示w3进行span分类,确定每个span是否为一个事件的触发词或事件主体。通过该实施例方案,能够同时抽取事件触发词和事件的主体,可获取更加有用的信息,具有较强的实际应用价值;在数据处理和建模的过程中不使用现有的自然语言处理工具,使得操作简单,也避免了因使用自然语言处理工具而导致的误差累积的问题,同时也更加符合真实应用场景;通过划分span的方式,完美解决了序列标注存在的问题,效率更高,适用性更强。本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的其他优点可通过在说明书以及附图中所描述的方案来实现和获得。附图说明附图用来提供对本申请技术方案的理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。图1为本申请实施例的事件检测方法流程图;图2为本申请实施例的事件检测装置组成框图。具体实施方式本申请描述了多个实施例,但是该描述是示例性的,而不是限制性的。江西无限语音关键事件检测服务标准