而能对广大的电话用户开放。统一消息融合了语音和数据服务,从而使电信运营商在保护已有投资的前提下进入数据业务市场。语音电话簿:语音电话簿可以帮助用户通过电话或手机等通信设备,呼叫存储在统一邮箱中的联系人姓名,从而实现拨打联系人的移动电话、住宅电话或者办公电话。电话簿存储在统一邮箱中,拥有超过500个联系人的信息存储量,真正实现了海量电话簿;不用再费力去记忆、查询各种电话号码,只需对电话说出"拨打XXX的移动电话""拨打XXX的办公电话""拨打XXX的家庭电话",系统会自动为用户接通XXX的电话。通过各种通讯设备以语音呼叫联系人,高达97%的语音识别准确率,通过语音呼叫进行检索,准确、快捷的为用户接通联系人的电话!省时省力的语音电话簿联系方式,查询和拨打各种电话都将不再是一件难事,不仅能够为通信服务商提升话费收入,而且增加了用户对服务提供商的忠诚度和依赖性。提高窄带(EVS-NB)和宽带(EVS-WB)语音服务的质量和编码效率。新一代语音服务服务标准
DFCNN先对时域的语音信号进行傅里叶变换得到语音的语谱,DFCNN直接将一句语音转化成一张像作为输入,输出单元则直接与终的识别结果(例如,音节或者汉字)相对应。DFCNN的结构中把时间和频率作为图像的两个维度,通过较多的卷积层和池化(pooling)层的组合,实现对整句语音的建模。DFCNN的原理是把语谱图看作带有特定模式的图像,而有经验的语音学**能够从中看出里面说的内容。DFCNN结构。DFCNN模型就是循环神经网络RNN,其中更多是LSTM网络。音频信号具有明显的协同发音现象,因此必须考虑长时相关性。由于循环神经网络RNN具有更强的长时建模能力,使得RNN也逐渐替代DNN和CNN成为语音识别主流的建模方案。例如,常见的基于seq2seq的编码-解码框架就是一种基于RNN的模型。长期的研究和实践证明:基于深度学习的声学模型要比传统的基于浅层模型的声学模型更适合语音处理任务。语音识别的应用环境常常比较复杂,选择能够应对各种情况的模型建模声学模型是工业界及学术界常用的建模方式。但单一模型都有局限性。HMM能够处理可变长度的表述,CNN能够处理可变声道。RNN/CNN能够处理可变语境信息。声学模型建模中,混合模型由于能够结合各个模型的优势。四川信息化语音服务您知道什么是语音服务?
一个典型的语音识别系统。语音识别系统信号处理和特征提取可以视作音频数据的预处理部分,一般来说,一段高保真、无噪声的语言是非常难得的,实际研究中用到的语音片段或多或少都有噪声存在,所以在正式进入声学模型之前,我们需要通过消除噪声和信道增强等预处理技术,将信号从时域转化到频域,然后为之后的声学模型提取有效的特征向量。接下来声学模型会将预处理部分得到的特征向量转化为声学模型得分,与此同时,语言模型,也就是我们前面在自然语言处理中谈到的类似N-Gram和RNN等模型,会得到一个语言模型得分,解码搜索阶段会针对声学模型得分和语言模型得分进行综合,将得分比较高的词序列作为的识别结构。这便是语音识别的一般原理。因为语音识别相较于一般的自然语言处理任务特殊之处就在于声学模型,所以语言识别的关键也就是信号处理预处理技术和声学模型部分。在深度学习兴起应用到语言识别领域之前,声学模型已经有了非常成熟的模型体系,并且也有了被成功应用到实际系统中的案例。例如,经典的高斯混合模型(GMM)和隐马尔可夫模型(HMM)等。神经网络和深度学习兴起以后。
智能语音交互呼入智能语音交互呼入是指用户呼入后可通过回调接口获取企业设定的语音识别模型ID等参数,对用户的语音进行语音识别,将识别结果(一段文字)传给企业,企业根据自己的业务实际情况返回结果(一段音频或一段文字)给语音服务平台,语音服务平台进行播报或调用TTS能力进行播报的一种通信能力平台。场景:企业可基于智能语音交互呼入能力构建呼入语音机器人,常用于智能语音客服场景,例如订餐场景下的语音机器人自助订餐服务、物流场景下的语音机器人自助下单服务。价值:通过智能语音交互呼入平台构建的呼入语音机器人,可替代人工坐席自助接待来电用户,减少客服场景下的人力投入。智能语音交互呼出智能语音交互呼出是指可通过调用接口发起外呼,机器人根据预设内容进行播报,用户接听并回复后,由云通信平台识别用户回复结果(生成文本)返回给企业,企业根据自己的业务实际情况返回结果(一段音频或一段文字)给云通信平台进行播报。通过智能语音交互呼出产品,企业可快速构建智能外呼机器人。企业无需关注底层能力,专注于意图识别和话术编排即可构建属于企业自己的外呼机器人。场景:企业可基于智能语音交互呼出产品构建呼出语音机器人。获取基于物联网主控设备所确定的语音服务控制请求。
使CirrusLogic的SoundClear算法能够屏蔽对Alexa唤醒词和命令精度造成干扰的噪声。CirrusLogic的智能编解码器集成了Hi-FiDAC、立体声耳机放大器和单声道扬声器放大器,帮助OEM降低了从扬声器到简单数字助理产品的材料成本。设计时充分考虑了低功耗便携式设备和附件的需求,其功耗一般要比竞争解决方案低80%。该套件是一个完整的解决方案,语音采集板包括高性能双麦克风阵列、RaspberryPi3(Rpi3)、扬声器,以及预装了所需全部固件的microSD卡,采用该套件后生产效率会得到快速提升。CirrusLogic的控制台简化了各种RPi3应用程序的操作,提供了功能强大、用户友好的界面以实现声学调音和诊断功能。语音采集参考板的原理图设计和材料清单是专为大多数AVS应用程序设计的,客户只需要很少的定制改动,进一步缩短了产品面市时间。创建项目后,导航到“语音服务数据集”选项卡。北京无限语音服务
有关语音服务订阅的建议区域列表,请参阅设置Azure帐户。新一代语音服务服务标准
让客户做选择题而不是**题。针对客户说话声音过大、过小、过快、周围噪音过大等异常情况,系统需要提示原因。而对于客户打招呼、闲聊等一些与业务无关的说法,系统也能够简单回答。我们看到了一个VUI专业服务团队,他们正在通过做大量的用户拨打测试,了解用户在特定提示音下的反应是什么,研究什么样的交互式更符合用户习惯,同时容易供智能语音系统进行处理。三.智能语音服务在IVR中的应用展望智能语音服务在IVR中的应用已经初步体现了价值,其中主要为节约人工成本,以1000坐席的呼叫中心规模计算,智能语音导航可分流10%以上的话务量,节省100名坐席、每名坐席每年的综合成本以6万元计算,年节约费用600万元。同时用户无需受限于冗长、复杂、效率低下的按键式菜单、带来更高的客户满意度。智能语音驱动的IVR系统扩展业务更加方便,没有层级的限制,可以将更多的业务扩展到系统中,例如与知识库等系统对接,直接回答用户问题,进一步提升自助服务的能力,降低人工话务。我们还可以将智能语音导航系统拓展到手机客户端中,集成在网厅中,用户对着手机和电脑说出需求,即可办理业务,实现多渠道智能语音服务。在传统IVR面临根本性的应用瓶颈时。 新一代语音服务服务标准