并从过滤后的列表中找出需要控制的设备。在步骤560中,智能语音平台根据智能家居协议约定的格式向iot智能设备平台发送特定设备的控制指令。在步骤570中,iot智能设备平**成对智能设备的控制,并返回响应。在步骤580中,智能语音平台根据响应结果,向智能音箱返回结果,以使得音箱进行播报操作。在本发明实施例中,不需要说话人在话语中包含特定的位置信息就能够实现对特定区域内的物联网设备进行操控,具有较佳的用户体验。并且,在一些应用场景下尤其适用,例如限制只能控制某个房间里的设备,用户其他房间的设备则不能控制。示例性地,在儿童教育场景下,全屋有一个主控智能音箱可以控制全屋的设备,并且儿童房有一个平板电脑,只允许控制儿童房里的设备。另外,在酒店场景下,酒店中每间客房均配备一个智能音箱,每个音箱只能控制自己所在房间的智能设备。本发明一实施例的语音服务端600,包括获取单元610、用户设备确定单元620、目标受控设备确定单元630和操控单元640。获取单元610获取基于物联网主控设备所确定的语音控制请求,所述语音控制请求包括语音消息、目标设备用户信息和目标设备区域配置信息。其中为了更有效地提取特征往往还需要对所采集到的声音信号进行滤波、分帧等预处理工作。青海量子语音服务
语音技术,其基本的技能应该是语音识别(ASR,AutomaticSpeechRecognition)和语音合成(TTS,TextToSpeech)。基于这两项功能,在语音技术领域,可以玩出很多花儿来!就拿语音识别来说,除了“语音转文字”这样简单的语音识别,还有对不同方言、不同环境场景,另外再加上另外一个AI能力“自然语言处理”,从而使语音识别更加“AI”。并且语音合成也是如此,处理简单的“文字转语音”,要玩出花来,还有对音色、语言、情绪等多维度进行“AI”赋能,语音合成也就也玩出花儿来!围绕着“语音”的特性,用思维导图画一下,就“语音”一词从大闹中闪现出来的与其相关名词或者特性:可见,语音数据,其相关的信息还是不少的。带着以上几个相关词语,我们逐一把各AI平台的语音能力梳理一遍,都了解一下踩着这两个语音技术AI能力的基石,国内各AI平台把语音技术挖掘的怎么样。横评内容:能力、描述、提供资源、调用方式、鉴权方式、请求方式内容、录音文件、费用、QPS、适用场景国内AI平台语音技术能力一览表。 青海量子语音服务语音生物特征可用于通过简化的基于语音的身份验证来验证说话人。
例如iphone、多媒体手机、功能性手机,以及低端手机等。(2)超移动个人计算机设备:这类设备属于个人计算机的范畴,有计算和处理功能,一般也具备移动上**性。这类终端包括:pda、mid和umpc设备等,例如ipad。(3)便携式娱乐设备:这类设备可以显示和播放多媒体内容。该类设备包括:音频、视频播放器(例如ipod),掌上游戏机,电子书,以及智能玩具和便携式车载导航设备。(4)其他具有数据交互功能的电子装置。以上所描述的装置实施例**是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如rom/ram、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器。
以下规范化规则自动应用到听录:使用小写字母。删除除字词中撇号外的所有标点。将数字扩展为字词/口语形式,例如美元金额。中国大陆普通话(zh-CN)中国大陆普通话音频的人为标记的听录必须使用字节顺序标记进行UTF-8编码。避免使用半角标点字符。在文字处理程序中准备数据或从网页中擦除数据时,可能会无意中包括这些字符。如果存在这些字符,请务必将其更新为相应的全角替代字符。中国大陆普通话的文本规范化文本规范化是指将字词转换为在训练模型时使用的一致格式。某些规范化规则会自动应用到文本,但我们建议你在准备人为标记的听录数据时遵循以下准则:将缩写写成字词。用口语形式写数字字符串。以下规范化规则自动应用到听录:删除所有标点,将数字扩展为口语形式,将全角字母转换为半角字母,对所有英语单词使用大写字母。德语(de-DE)和其他语言德语(以及其他既非英语也非中国大陆普通话的语言)音频的人为标记的听录必须使用字节顺序标记进行UTF-8编码。应该为每个音频文件提供一个人为标记的听录。德语文本规范化文本规范化是指将字词转换为在训练模型时使用的一致格式。某些规范化规则会自动应用到文本。
客户可以在智能手机上无缝、安全地输入或查看信息,以提高通话的准确性和安全性。
这些传统的声学模型在语音识别领域仍然有着一席之地。所以,作为传统声学模型的,我们就简单介绍下GMM和HMM模型。所谓高斯混合模型(GaussianMixtureModel,GMM),就是用混合的高斯随机变量的分布来拟合训练数据(音频特征)时形成的模型。原始的音频数据经过短时傅里叶变换或者取倒谱后会变成特征序列,在忽略时序信息的条件下,这种序列非常适用于使用GMM进行建模。混合高斯分布的图像。高斯混合分布如果一个连续随机变量服从混合高斯分布,其概率密度函数形式为:GMM训练通常采用EM算法来进行迭代优化,以求取GMM中的加权系数及各个高斯函数的均值与方差等参数。GMM作为一种基于傅里叶频谱语音特征的统计模型,在传统语音识别系统的声学模型中发挥了重要的作用。其劣势在于不能考虑语音顺序信息,高斯混合分布也难以拟合非线性或近似非线性的数据特征。所以,当状态这个概念引入到声学模型的时候,就有了一种新的声学模型——隐马尔可夫模型(HiddenMarkovmodel,HMM)。在随机过程领域,马尔可夫过程和马尔可夫链向来有着一席之地。当一个马尔可夫过程含有隐含未知参数时,这样的模型就称之为隐马尔可夫模型。HMM的概念是状态。状态本身作为一个离散随机变量。
语音服务主要应用领域有哪些?重庆移动语音服务供应
人工语音服务是什么?青海量子语音服务
可以导航到“测试模型”选项卡,以直观地检查含音频数据的质量,或者通过音频+人为标记的听录内容来评估准确性。音频+人为标记的听录内容音频+人为标记的听录内容可用于训练和测试目的。若要从轻微口音、说话风格、背景噪音等方面优化声音,或在处理音频文件时度量Microsoft语音转文本的准确性,则必须提供人为标记的听录内容(逐字逐句)进行比较。尽管人为标记的听录往往很耗时,但有必要评估准确度并根据用例训练模型。请记住,识别能力的改善程度以提供的数据质量为界限。出于此原因,只能上传质量的听录内容,这一点非常重要。音频文件在录音开始和结束时可以保持静音。如果可能,请在每个示例文件中的语音前后包含至少半秒的静音。录音音量小或具有干扰性背景噪音的音频没什么用,但不应损害你的自定义模型。收集音频示例之前,请务必考虑升级麦克风和信号处理硬件。默认音频流格式为WAV(16KHz或8kHz,16位,单声道PCM)。除了WAV/PCM外,还可使用GStreamer支持下列压缩输入格式。MP3、OPUS/OGG、FLAC、wav容器中的ALAW、wav容器中的MULAW、任何(适用于媒体格式未知的情况)。备注上传训练和测试数据时,.zip文件大小不能超过2GB。只能从单个数据集进行测试。
青海量子语音服务