作为社区的基本单元,小区是智慧城市建设的重要一环,而在安防领域,小区更是守护家庭的门户,如何更加高效的守护小区安全是社区创新基层治理的探索方向。经过技术的不断革新,智慧安防逐渐成为这个方向。通过在小区传统人防、物防、技防的基础上,应用人工智能、物联网等当前先进的信息化技术,对居民小区安防系统进行智能化升级,加强对社区人、车、事、物、地、组织“信息进行感知”,打造并集成出入口、智能门禁、信息卡口、移动巡防、视频监控、报警联防、信息发布、停车场、访客、梯控等产品及子系统,也包括智慧物管安防综合平台,实现数据的统一汇聚、统一管理。成都慧视的跟踪版是国产化的!吉林质量目标跟踪
用检测器模型去解决跟踪问题,遇到的比较大问题是训练数据不足。普通的检测任务中,因为检测物体的类别是已知的,可以收集大量数据来训练。例如 VOC、COCO 等检测数据集,都有着上万张图片用于训练。而如果我们将跟踪视为一个特殊的检测任务,检测物体的类别是由用户在首先帧的时候所指定的。这意味着能够用来训练的数据只是只是只有少数几张图片。这给检测器带来了很大的障碍。而慧视光电定制的目标跟踪算法可以有效的解决这个问题,通过AI自动图像标注平台SpeedDP的大量模型部署训练,能够有效解决数据训练不足的问题。稳定目标跟踪联系方式推荐使用慧视光电的跟踪板卡。
人工智能起源于上个世纪五十年代,被誉为新时代工业发展的引擎。随着技术的发展,为了使得计算机可以拥有像人眼一样感知、分析、处理现实世界的能力,六十年代初,人工智能衍生出了一个重要的分支,计算机视觉。在计算机视觉的研究过程中,学者们为了阐述“根据目标在视频中的某一帧状态来估计其在后续帧中的状态”,一个新的学科——目标跟踪应运而生。目标跟踪是计算机视觉和机器人研发领域的重要分支,在人机交互、安全监控、自动驾驶、城市交通、军领域、医疗诊断等领域都发挥了重要的作用,其主要功能就是在视频图像中遍历感兴趣的区域,并在接下来的视频帧中对其进行跟踪
成都慧视开发的图像跟踪板能够实现高精度的自动目标视频跟踪,所谓自动视频跟踪,是利用视频的图像信号,自动进行目标的检测、识别、定位,自动控制云台和摄像机的运动,跟踪和锁定目标。过去在安防领域,视频信号一般都是可见光的摄像机产生的PAL制或NTSC制的模拟信号;现在,随着320x240左右分辨率的非制冷的红外热象仪的价格进一步下降,热成像传感器将由jun用领域进入安防领域,以弥补CCD摄像机的夜晚成象质量差和非全天候等的问题。智能图像处理板在边海防中的应用。
2010年以前,目标跟踪领域大部分采用一些经典的跟踪方法,比如Meanshift、Particle Filter和Kalman Filter,以及基于特征点的光流算法等。Meanshift方法是一种基于概率密度分布的跟踪方法,使目标的搜索一直沿着概率梯度上升的方向,迭代收敛到概率密度分布的局部峰值上。首先Meanshift会对目标进行建模,比如利用目标的颜色分布来描述目标,然后计算目标在下一帧图像上的概率分布,从而迭代得到局部密集的区域。Meanshift适用于目标的色彩模型和背景差异比较大的情形,早期也用于人脸跟踪。由于Meanshift方法的快速计算,它的很多改进方法也一直适用至今。RK3588处理板,智慧视觉应用开发板。人防目标跟踪价格信息
成都慧视光电技术有限公司推出基于全国产化RK3588板的高性能图像跟踪板卡。吉林质量目标跟踪
之所以能产生这种可见运动或表观运动,是因为物体以不同的速度在不同的方向上移动,或者是因为相机在移动(或者两者都有)在很多应用程序中,跟踪表观运动都是极其重要的。它可用来追踪运动中的物体,以测定它们的速度、判断它们的目的地。对于手持摄像机拍摄的视频,可以用这种方法消除抖动或减小抖动幅度,使视频更加平稳。运动估值还可用于视频编码,用以压缩视频,便于传输和存储。被跟踪的运动可以是稀疏的(图像的少数位置上有运动,称为稀疏运动),也可以是稠密的(图像的每个像素都有运动,称为稠密运动)跟踪视频中的特征点从前面章节介绍的内容可以看出,根据特殊的点分析图像,可以使计算机视觉算法更加实高效。吉林质量目标跟踪