这种智慧化的建设就是采用图像处理。在无人机内部安装图像处理板,这些图像处理板和相机、算法的有机结合就形成了无人机的智慧眼,有了这个智慧眼,无人机就能够对视野范围内的物体进行AI识别,从而自动完成避障、巡检等操作。成都慧视开发的小型化图像处理板Viztra-LE026就是专门为无人机设计的一款“智慧眼”处理器。这块板卡采用了RV1126开发而成,具备2.0TOPS的算力,外形呈圆形化设计,整体外观大小为Ф38mm*12mm,重量只有12g,功耗不高于4W,用在无人机领域具有功耗低、尺寸小的优势,不会过多占用和消耗无人机的内部空间和续航。SpeedDP能够节约大量的图像标注时间。江西电力巡检AI智能智能方案
目标识别算法是一种深度学习算法,其聪明程度需要我们不断训练,这就得益于大量的图像标注,通过对车辆行驶环境的数据集的大量标注,能够让AI更加聪明,标注得越多,识别的精度就可能越高。但是大量的图像标注跟工作显然会耗费大量的时间精力。而慧视SpeedDP的出现很好地解决了这个问题。SpeedDP是一个深度学习AI算法训练开发平台,他能够通过现有的算法模型或者自训练一个算法模型,实现对新数据集的快速AI自动标注,以此反复,帮助使用者提升算法性能。能够有效节约大量的时间。江西电力巡检AI智能智能方案AI自动图像标注工具要多少钱?

成都慧视推出的深度学习算法开发平台SpeedDP,它的主要功能就是帮助进行算法模型的测试验证,进行快速的针对大量数据的AI自动标注,然后提升自身算法能力。在无人机智能炮弹测试验证中,通过对原始算法的模型训练,能够不断评估算法的能力,然后对新的打击数据集目标进行AI自动标注,让算法在学习中不断变得聪明。通过SpeedDP的应用,能够极大减少整个测试验证所需时间,减少人力成本支出,减少项目开发周期,让工程师不再为繁琐的图像标注浪费时间将更多的精力放在更重要的领域。
AI的不断应用发展使得传统的人工工作的弊端得到了很好的弥补。比如在图像标注这个领域,传统的标注需要招聘大量的人员,并且标注图像所耗费的时间精力也是不可估量的,而AI模型的出现让这一切都成为过去。利用慧视光电打造的深度学习算法开发平台SpeedDP,就能够针对场景识别进行特有的模型部署训练,通过大量的训练,让AI学会自动标注图像。平台采用标准的AI算法开发流程,通过从需求分析、数据制作到模型训练、测试验证以及模型部署几个主要模块。SpeedDP用于模型训练和评估测试的数据集是由一系列的图像和标注文件组成的,平台支持多种开源数据格式如VOC和COCO。而目前平台共支持yolox系列和yolov8系列模型用于模型训练(分割任务*支持yolov8模型),通过不断额测试验证,就能够让AI实现海思、RockChip嵌入式硬件平台等模型部署的可视化AI开发功能。利用成都慧视推出的SpeedDP能够帮助训练识别算法。

无人装备作战狼群,有“狼”负责侦查,有“狼”负责打击,而有的“狼”则负责后勤保障,这种无人装备集群作战能够有效辅助特种作战。“机器狼”的升级之所以能够满足多样化的任务,得益于其智能化的建设。就是下面这样的一个"智慧眼"的加入,使得机器狼能够自主完成许多任务。这个智慧眼由光学系统(彩色图像)、摄像机、图像处理、电源系统及机械结构组成,然后在外面加上外壳,形成一个整体。而拆分来看,产品主要就由高清摄像机和高性能的图像处理板组成。数据标注很麻烦,所以需要AI介入。甘肃开放AI智能算法
利用成都慧视推出的SpeedDP能够帮助训练AI识别算法。江西电力巡检AI智能智能方案
在无人机识别这个领域,应用十分广,因此针对于这方面的教学必不可少。目前国产化的识别传感器当属瑞芯微的RK3588,因此许多院校都会选择采用RK3588来进行教学,成都慧视开发的Viztra-HE030图像处理板就是利用RK3588打造而成,能够根据不同规格的相机深度定制接口。(不同接口的RK3588图像处理板)如果院校想进一步节约时间提升效率,成都慧视还可以提供训练学习设备的整套方案。在高性能Viztra-HE030图像处理板的基础上,根据需求帮助选择合适的相机,并且针对算法这块,我们能够提供一个高效的深度学习算法开发平台SpeedDP,这个平台能够通过大量的识别检测算法模型训练开发,实现对新数据集的快速AI自动图像标注,一方面省去大量手动标注工作,另一方面帮助提升算法性能。江西电力巡检AI智能智能方案