工业设备的预测性维护的市场需求显而易见。但是预防性维护想要产生业务价值、真正大规模发展却是遇到了两个难题。首先项目实施成本过高,硬件设备大多依赖进口。比如数采传感器、设备等。这导致很多企业在考虑投入产出比时比较犹豫。其次是技术需要突破,目前大多数供应商只实现了设备状态的监视,真正能实现故障准确预测的落地案例寥寥无几。供应商技术和能力还需要不断升级。预防性维护要想实现更好的应用,要在以下方面实现突破。实现基于预测的维护,提升故障诊断及预测的准确率提高软硬件产品国产化率,降低实施成本。电机健康管理是基于各类数据监测和故障预测对设备完好性、可用性的评估和控制。杭州非标监测台
预测性维护应运而生。其是以状态为依据的维修,主要是对设备在运行中产生的二次效应(如振动、噪声、冲击脉冲、油样成分、温度等)进行连续在线的状态监测及数据分析,诊断并预测设备故障的发展趋势,提前制定预测性维护计划并实施检维修的行为。总体来看,状态监测和故障诊断是判断预测性维护是否合理的根本所在,数据状态的连续监测和远程传输上传相对已经比较成熟,而状态预测和故障诊断主要还是依靠人工分析实现,诊断分析人员通过趋势、波形、频谱等专业分析工具,结合传动结构、机械部件参数等信息,实现设备故障的精细定位。其发展趋势是将物联网及人工智能技术引入状态预测及故障的智能诊断,从而降低误判概率,大幅提升诊断效率和准确性。功能监测公司盈蓓德科技自主开发了大型旋转机械在线状态监测与分析系统。
通过对电机部分放电、振动、电流特征分析、磁通量和磁芯完整性的在线监测和离线检测,为电机转子和定子绕组的状态维修提供信息。通过监测电机的电流、电压信号,在自身内部建立数学模型,对被监电机进行自我学习,完成学习后开始进行监测。通过将测量电流与数学模型计算所得电流进行差分比较,得到一组数值,再将该数值通过傅里叶分析,得到一个功率谱密度图。功率频谱图中,各频率段的突加分量**不同的故障类型,**终给出报告,告知维修团队应该在接下来多久时间内需对该故障进行处理。维修团队根据报告,按实际情况采购备件、排产、计划停机维修,比较低限度的减少了设备停机时间,降低了非计划性停机带来的损失。
基于人工神经网络的诊断方法简单处理单元***连接而成的复杂的非线性系统,具有学习能力,自适应能力,非线性逼近能力等。故障诊断的任务从映射角度看就是从征兆到故障类型的映射。用ANN技术处理故障诊断问题,不仅能进行复杂故障诊断模式的识别,还能进行故障严重性评估和故障预测,由于ANN能自动获取诊断知识,使诊断系统具有自适应能力。基于集成型智能系统的诊断方法随着电机设备系统越来越复杂,依靠单一的故障诊断技术已难满足复杂电机设备的故障诊断要求,因此上述各种诊断技术集成起来形成的集成智能诊断系统成为当前电机设备故障诊断研究的热点。主要的集成技术有:基于规则的**系统与ANN的结合,模糊逻辑与ANN的结合,混沌理论与ANN的结合,模糊神经网络与**系统的结合。盈蓓德科技能为风机提供早期有效预知传动链故障、轴承损伤、齿轮箱、发电机等故障的状态监测解决方案。
手机微电机在线自动分拣系统。该系统精细高效的采集微型马达工作时的声音信号,然后通过声音分析算法进行质量特征值的提取,能够与现有的人工检测进行比对和分析,将以往人工检测形成的数据集标签,结合深度学习算法进行良品与次品的分类。并且由于微电机每天的生产数量都在几千万台,很适合使用深度学习等机器学习方法,因此通过机器学习方法,对大量电机特征数据(特别是故障电机)进行分析处理,对测试电机进行良品检测和分类,准确率达到95%以上。盈蓓德科技顺应行业发展趋势,搭建了一套基于旋转类设备温度,振动状态监测、故障判断和预测性维护系统。宁波监测系统
新型电机故障监测系统借用物联网、人工智能、边缘计算等技术,提前预判设备故障。杭州非标监测台
预测性维护对制造业在节省成本损耗、提升企业的生产效率和产业智能化升级具有非常重要的意义。国内工业现场的存量设备数目相当可观,绝大多数还没采用有效的预测性维护方案,尤其是大型旋转类设备,一般都是主要生产运行设备而且故障率相对较高,需要重点监控和维护。通过振动分析和诊治对旋转类设备进行预防性维护无疑向我们展示了一个极具发展潜力的市场。预测性维护在不久的未来将愈加凸显工业物联网中关键的应用优势,市场规模及需求将快速增长杭州非标监测台
上海盈蓓德智能科技有限公司属于电工电气的高新企业,技术力量雄厚。公司致力于为客户提供安全、质量有保证的良好产品及服务,是一家私营有限责任公司企业。公司始终坚持客户需求优先的原则,致力于提供高质量的智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统。盈蓓德科技自成立以来,一直坚持走正规化、专业化路线,得到了广大客户及社会各界的普遍认可与大力支持。