您好,欢迎访问

商机详情 -

杭州性能监测

来源: 发布时间:2023年10月23日

故障诊断可以根据状态监测系统提供的信息来查明导致系统某种功能失调的原因或性质,判断劣化发生的部位或部件,以及预测状态劣化的发展趋势等。电机故障诊断基本方法主要有:1、电气分析法,通过频谱等信号分析方法对负载电流的波形进行检测从而诊断出电机设备故障的原因和程度;检测局部放电信号;对比外部施加脉冲信号的响应和标准响应等;2、绝缘诊断法,利用各种电气试验装置和诊断技术对电机设备的绝缘结构和参数、工作性能是否存在缺陷做出判断,并对绝缘寿命做出预测;3、温度检测方法,采用各种温度测量方法对电机设备各个部位的温升进行监测,电机的温升与各种故障现象相关;4、振动与噪声诊断法,通过对电机设备振动与噪声的检测,并对获取的信号进行处理,诊断出电机产生故障的原因和部位,尤其是对机械上的损坏诊断特别有效。5、化学诊断的方法,可以检测到绝缘材料和润滑油劣化后的分解物以及一些轴承、密封件的磨损碎屑,通过对比其中一些化学成分的含量,可以判断相关部位元件的破坏程度。故障诊断可以根据状态监测系统提供信息来查明失调的原因或性质,判断劣化发生部位,以及预测状态发展趋势。杭州性能监测

杭州性能监测,监测

基于数据的故障检测与诊断方法能够对海量的工业数据进行统计分析和特征提取,将系统的状态分为正常运行状态和故障状态,可视为模式识别任务。故障检测是判断系统是否处于预期的正常运行状态,判断系统是否发生异常故障,相当于一个二分类任务。故障诊断是在确定发生故障的时候判断系统处于哪一种故障状态,相当于一个多分类任务。因此,故障检测和诊断技术的研究类似于模式识别,分为4个的步骤:数据获取、特征提取、特征选择和特征分类。1)数据获取步骤是从过程系统收集可能影响过程状态的信号,包括温度、流量等过程变量;2)特征提取步骤是将采集的原始信号映射为有辨识度的状态信息;3)特征选择步骤是将与状态变化相关的变量提取出来;4)特征分类步骤是通过算法将前几步中选择的特征进行故障检测与诊断。在大数据这一背景下,传统的基于数据的故障检测与诊断方法被广泛应用,但是,这些方法有一些共同的缺点:特征提取需要大量的知识和信号处理技术,并且对于不同的任务,没有统一的程序来完成。此外,常规的基于机器学习的方法结构较浅,在提取信号的高维非线性关系方面能力有限。杭州耐久监测设备监测系统可以实时采集旋转设备的运行状态数据,上传到云平台进行直观展示、预警报警、趋势分析。

杭州性能监测,监测

故障诊断可以使系统在一定工作环境下根据状态监测系统提供的信息来查明导致系统某种功能失调的原因或性质,判断劣化发生的部位或部件,以及预测状态劣化的发展趋势等。

电机故障诊断的基本方法主要有:1、电气分析法,通过频谱等信号分析方法对负载电流的波形进行检测从而诊断出电机设备故障的原因和程度;检测局部放电信号;对比外部施加脉冲信号的响应和标准响应等;2、绝缘诊断法,利用各种电气试验装置和诊断技术对电机设备的绝缘结构和参数、工作性能是否存在缺陷做出判断,并对绝缘寿命做出预测;3、温度检测方法,采用各种温度测量方法对电机设备各个部位的温升进行监测,电机的温升与各种故障现象相关;4、振动与噪声诊断法,通过对电机设备振动与噪声的检测,并对获取的信号进行处理,诊断出电机产生故障的原因和部位,尤其是对机械上的损坏诊断特别有效。5、化学诊断的方法,可以检测到绝缘材料和润滑油劣化后的分解物以及一些轴承、密封件的磨损碎屑,通过对比其中一些化学成分的含量,可以判断相关部位元件的破坏程度。

目前设备状态监测及故障预警若干关键技术可归纳如下(1)揭示设备运行状态机械动态特性劣化演变规律。设备由非故障运行状态劣化为故障运行状态,其机械动态特性通常有一个发展演变过程(2)提取设备运行状态发展趋势特征。在役设备往往具有复杂运行状态,在长历程运行中工况和负载等非故障因素会造成信号能量变化,故障趋势信息往往被非故障变化信息淹没,需较大程度上消除非故障变化造成的冗余信息,进而构建预测模型。动力装备全寿命周期监测诊断方面:实现了支持物联网的智能信息采集与管理、全生命周期动态自适应监测、早期非线性故障特征提取。优化重构出综合体现装备运行工况及表现的新参数,提高异常状态辨识的适应性与可靠性,基于运行过程信息反映装备劣化趋势与故障发展规律,来提高故障早期辨识能力。基于物联网和网络化监测诊断将产品监测诊断与运行服务支持有机集成一体,在应用中实现动力装备常见故障诊断准确率达80%以上。可应用于风力大电机、空压机、氮压机等大型动力装备的集群化诊断领域。提供了基于物联网的动力装备全生命周期监测与服务支持创新模式,提供了其生命周期的远程监测诊断与维护等专业化服务。电机监测系统帮助识别处于初期阶段的旋转类设备的机械和液压故障,从而制定更为合理的辅助维护计划。

杭州性能监测,监测

传统维护模式中的故障后维护与定期维护将影响生产效率与产品质量,并大幅提高制造商的成本。随着物联网、大数据、云计算、机器学习与传感器等技术的成熟,预测性维护技术应运而生。以各类如电机、轴承等设备为例,目前已发展到较为成熟的在线持续监测阶段,来实现查看设备是否需要维护、安排维护时间来减少计划性停产等,并能够快速、有效的通过物联网接入到整个网络,将数据回传至管理中心,来实现电机设备的预测性维护。电动机是机械加工中不可或缺的必备工具,电动机在运转中常产生各种故障,为保证电动机运行安全,对电动机运行状态进行在线监测尤为重要。以三相异步电动机为研究对象,采用传感器获取电动机运行中的重要参数(振动、噪声、转速及温度等),由时/频域分析及能量分析等方法提取电动机运行特征量,构成特征向量,采用BP神经网络训练的方法建立状态识别模型,通过BP神经网络模式识别方法,判断电动机运行的状态,在此基础上,利用LabVIEW软件构建可视化监测系统,将电动机运行参数及状态实时显示在可视化界面中,完成在线智能监测。电机监测和故障预判系统是实现工业设备数智化管理和预测性维护的关键。杭州EOL监测技术

智能刀具监测系统可大幅度提效率、提高工件尺寸精度和一致性、减少生产成本,实现数控加工自动化。杭州性能监测

针对刀具磨损状态在实际生产加工过程中难以在线监测这一问题,提出一种通过通信技术获取机床内部数据,对当前的刀具磨损状态进行识别的方法。通过采集机床内部实时数据并将其与实际加工情景紧密结合,能直接反映当前的加工状态。将卷积神经网络用于构建刀具磨损状态识别模型,直接将采集到数据作为输入,得到了和传统方法精度近似的预测模型,模型在训练集和在线验证试验中的表现都符合预期。刀具磨损状态识别的方法在投入使用时还有一些问题有待解决:①现有数据是在相同的加工条件下测得的,而实际加工过程中,加工参数以及加工情景是不断变化的,因此需要在下一步的研究中,进行变参数试验,考虑加工参数对于刀具磨损的影响,并针对常用的一些加工场景,建立不同的模型库。变换加工场景时,通过获取当前场景,及时匹配相应的预测模型即可。②本研究中的模型是一个固定的模型。今后需要根据实时的信号以及已知的磨损状态,对模型进行实时更新,从而在实时监测过程中实现自学习,不断提升模型的精度和预测效果。杭州性能监测