您好,欢迎访问

商机详情 -

绍兴专业监测设备

来源: 发布时间:2024年02月27日

电机状态监测和振动分析提供加速度计选择的建议。基于直流和非同步交流电机的常见故障。这些常见故障可通过振动分析检测出来,包括机械和电气故障。重点是传感器的频率范围及其安装方法,以便可靠地检测这些故障。例如,考虑以几百赫兹的周期性频率(称为故障频率)发生的撞击事件,但每个事件的能量可从起始点带走,频率在低至千赫范围内。因此,用于检测撞击、摩擦和凹槽等事件的传感器应在几百赫兹到20千赫的宽频范围内响应。对于传统的机械故障,如平衡和对准,频率范围从约0.2倍的运行速度到50-60倍运行速度是足够的。电气故障需要机械故障所需的低频和高频段。电机会同时出现机械和电气故障,这会导致振动。只要安装的振动传感器具有足够的带宽和灵敏度,就可以检测到这些故障。机械故障伴随着冲击、摩擦和疲劳,会产生比电气故障频率更剧烈的振动,但凹槽除外。凹槽产生的振动频率与摩擦频率大致相同。如果传感器的带宽和安装方法足以检测机械故障,那么它们也将检测电气故障。设备状态监测技术是一种用于实时或定期检测和评估设备运行状况的技术。绍兴专业监测设备

绍兴专业监测设备,监测

状态监测就是给机器体检,故障诊断就是给机器看病。医生给病人看病,首先是进行体征检查,例如先查体温,再进行验血、X光、心电图、B超、甚至CT等各种理化检验,然后根据检查结果和病史,利用医生的知识及经验,对病情做出诊断。对机器故障的诊断,类似于医生看病,首先对机器的状态进行监测,例如先看振动值,再进行频谱、波形、轴心轨迹、趋势、波德图等各种检测分析,然后结合设备的原理、结构、历史状况等,利用专业人员的知识及经验,对故障进行综合分析判断。1滚动轴承故障振动的诊断方法异步电动机的常见故障主要可以分为定子故障、转子故障及轴承故障。其中轴承故障占70%以上,如果我们有办法对轴承情况能实时进行监测,那么异步电动机故障率会减低。滚动轴承状态监测和故障诊断的方法有多种,例如振动分析法、油液分析法(磁性法、铁谱法、光谱法)、声发射分析法、光纤诊断法等。各种方法都有自己的特点,其中振动分析法以其实用和相对简单方便。滚动轴承不同于其它机械零件,其振动信号的频率范围很宽,信噪比很低,信号传递路途上的衰减量大,因此,提取它的振动特征信息必须采用一些特殊的检测技术和处理方法。绍兴专业监测特点电机监测系统产生大量的数据,包括振动数据、电流数据等。有效地处理和分析这些大量数据是一项挑战。

绍兴专业监测设备,监测

现代电力系统中发电机单机容量越大型发电机在电力生产中处于主力位置,同时大型发电机由于造价昂贵,结构复杂,一旦遭受损坏,需要的检修期长,因此要求有极高的运行可靠性。就我国今后很长一段时间内的缺电、用电紧张的状况而言,发电机的年运行小时数目和满负荷率都较以往高出很多,备用容量很少的情况下,其运行可靠性显得尤为重要和突出。因此对大型机组进行在线监测与诊断,做到早期预警以防止事故的发生或扩大具有重要的现实意义。通常对发电机的“监测”与“诊断”在内容上并无明确的划分界限,可以说监测的数据和结果即为诊断的依据。监测利用各种传感器在电机运行时对电机的状态提取相关数据。故障诊断使用计算机及其相应智能软件,根据传感器提供的信息,对故障进行分类、定位,确定故障的严重程度并提出处理意见。因此状态监测和故障诊断是一项工作的两个部分,前者是后者的基础,后者是前者的分析与综合。电机状态监测技术可帮助运行维护人员摆脱被动检修和不太理想的定期检修的困境,按照设备内部实际的运行状况,合理的安排检修工作,实现所谓“预知”维修。

电机健康状态监测是一种通过对电机运行状态进行实时监测,判断其是否处于正常工作状态的方法。通过电机健康状态监测,可以及时发现并处理电机潜在的故障,防止设备损坏,提高设备稳定性和可靠性。电机健康状态监测的方法包括以下几种:振动监测:通过振动传感器安装在电机上,实时监测电机的振动情况。当振动超过正常范围时,可以发出警报并停机,以防止设备损坏。温度监测:通过温度传感器监测电机内部和外部的温度变化。当发现异常的温度升高时,可能表明电机存在故障。电流监测:通过电流传感器监测电机的电流变化,可以检测电机是否存在负载过重、不平衡等问题,及时采取措施。声音监测:通过麦克风或声音传感器监测电机的声音,可以判断电机是否存在异响和杂音等异常情况,及时排除问题。为了提高电机的健康状态监测效果,可以将上述方法结合使用,形成一个完整的电机健康监测系统。同时,对于不同的电机类型和运行环境,还需要根据实际情况选择合适的监测方法和参数。总之,电机健康状态监测是保障电机正常运行的重要手段之一。通过实时监测电机的运行状态,可以及时发现并处理潜在的故障,提高设备的稳定性和可靠性,延长电机的使用寿命。电机的运行状态涉及多个参数,包括振动、温度、电流、电压等。同时监测和分析这些多参数复杂性是一个挑战。

绍兴专业监测设备,监测

针对刀具磨损状态在实际生产加工过程中难以在线监测这个问题,提出一种通过通信技术获取机床内部数据,对当前的刀具磨损状态进行识别的方法。通过采集机床内部实时数据并将其与实际加工情景紧密结合,能直接反映当前的加工状态。将卷积神经网络用于构建刀具磨损状态识别模型,直接将采集到数据作为输入,得到了和传统方法精度近似的预测模型,模型在训练集和在线验证试验中的表现都符合预期。刀具磨损状态识别的方法在投入使用时还有一些问题有待解决:①现有数据是在相同的加工条件下测得的,而实际加工过程中,加工参数以及加工情景是不断变化的,因此需要在下一步的研究中,进行变参数试验,考虑加工参数对于刀具磨损的影响,并针对常用的一些加工场景,建立不同的模型库。变换加工场景时,通过获取当前场景,及时匹配相应的预测模型即可。②本研究中的模型是一个固定的模型。今后需要根据实时的信号以及已知的磨损状态,对模型进行实时更新,从而在实时监测过程中实现自学习,不断提升模型的精度和预测效果。监测电机主要是通过各种传感器和技术手段,实时获取电机的运行状态和性能参数。功能监测特点

监测电机各个相位之间的电流和电压关系,以检测是否存在相位不平衡或其他电气问题。绍兴专业监测设备

现代电力系统中发电机的单机容量越大型发电机在电力生产中处于主力位置,同时大型发电机由于造价昂贵,结构复杂,一旦遭受损坏,需要检修期长,因此要求有极高的运行可靠性。就我国今后很长一段时间内的缺电、用电紧张的状况而言,发电机的年运行小时数目和满负荷率都较以往高出很多,备用容量很少的情况下,其运行可靠性显得尤为重要和突出。因此对大型机组进行在线监测与诊断,做到早期预警以防止事故的发生或扩大具有重要的现实意义。通常对发电机的“监测”与“诊断”在内容上并无明确的划分界限,监测的数据和结果即为诊断的依据。监测利用各种传感器在电机运行时对电机的状态提取相关数据。故障诊断使用计算机及其相应智能软件,根据传感器提供的信息,对故障进行分类、定位,确定故障的严重程度并提出处理意见。因此状态监测和故障诊断是一项工作的两个部分,前者是后者的基础,后者是前者的分析与综合。电机状态监测技术可帮助运行维护人员摆脱被动检修和不太理想的定期检修的困境,按照设备内部实际的运行状况,合理的安排检修工作,实现所谓“预知”维修。这样既可避免由于设备突然损坏,停止运行带来的损失,又可充分发挥设备的作用。绍兴专业监测设备