数据交易生态中的重要一环——数商,正发挥着什么作用?在峰会重要组成部分第二届中国国际数字产品博览会上,提出了数商在数据交易过程中承担的四种角色。角色之一是提供底层技术,例如通过隐私计算等技术可以帮数据交易所或者平台打造安全底座,完成数据的虚拟汇聚,实现数据底层价值。第二个角色是为数据交易所提供数据资源,企业在服务客户的同时形成数据生态,通过数据交易所作为合规出口,承担撮合数据交易的数据源角色。第三个角色是提供数据产品,除了自有数据,也可以通过与数交所其他的合作伙伴提供的数据组合成一个数据联盟,以此生产不同的数据产品去进行交易,比如服务于药厂的新药研发产品,服务于像金融征信的产品,服务于数字营销的产品等。第四个角色是为数据交易所提供精确的需求方,数据交易流程的终点是数据使用方,数商可以实现需求导流。我国在数据确权方面有何进展?企业数据资产入表流程
但在实现过程中,数据资产化面临的制度与技术障碍重重。“法律保障是要素价值的保障根本。作为资产,它就必然涉及到权属、产权的问题。现行的法律体系框架,事实上没有办法解决数据的确权问题。”梅宏表示,目前流通共享的数据定价、收益、分配无章可寻。同时,除了制度障碍,还存在技术挑战,数据安全、隐私保护、监管问题突出,这些问题属于国际性难题,还待进一步创新探索。从数据交易实践的角度,深圳数据交易有限公司(简称“深数交”)副总经理王冠向21世纪经济报道记者介绍了目前数据要素流通的现状及行业痛点诉求。“一是流通方式仍主要以数据包和API的方式为主。二是大量的数据资源尚未开通,未在市场上进行流通,比如公共数据,互联网企业数据等;三是当前数据的交易模式主要是以场外交易为主,需要进一步引导场外向场内转移。”王冠说。资产估值数据确权对于企业有何意义?
资产负债表里的资产,应当为企业创造收益与现金流,这是资产的使命。资产既有有形的,也有无形的;既有所有权的,也有控制权的。只要能够合理且准确计量,就可以入表。数据资产化,就是要求将数据本身作为其**经营资源来看待,能够在现实中服务客户、产生现金流;或者通过信息化建设提高企业经营管理的效率和效果。这就与传统概念里的有形资产产生了类似的功能。数据资产化,暂时认定为无形资产入表,未来是否重分类为其他资产还不好说。不过,同样值得期待的是,人力资源何时入表,我相信意义更为重大。
在资产负债表中,数据资产通常被归类为无形资产,其价值可以基于多种因素进行评估,如成本法、市场法和收益法等。同时,数据资产的价值也会随着时间和市场环境的变化而发生变化,因此需要进行动态的评估和管理。数据资产化之后,数据资产会渐渐成为企业的战略资产,企业将强化数据资源的存量、价值,以及对其分析、挖掘的能力,进而极大地提升企业核心竞争力。数据资产化让企业更加重视数据这一关键生产要素,探索数据价值实现场景,促进业务增长。 数据确权可以降低数据交易的风险和成本。
数据资产管理是一项系统化、全面性的工作,涉及到数据的整个生命周期。数据资产是指企业或组织在业务运营、管理活动中积累、产生的数据,包括结构化数据、非结构化数据等。数据资产具有极高的价值,可为企业提供决策支持、提升运营效率、驱动业务创新。涉及对数据资产的规划、组织、控制和利用,目的是确保数据资产的安全性、可靠性、一致性和完整性。这需要采用一系列的管理方式,如制定数据标准、建立数据治理体系、实施数据安全策略等。为确保数据资产的安全,保护措施同样必不可少。企业需建立完善的数据备份恢复机制、实施数据加密存储等措施,以防止数据丢失和未经授权的访问。同时,定期开展数据安全审计和风险评估,及时发现和解决潜在的安全隐患。企业如何判断数据权属?什么是数据资产确权托管
数据确权的重要性是什么?企业数据资产入表流程
然而,要实现数据资产入表并非易事,还面临着诸多挑战。一是数据资产的界定和计量存在困难。数据资产具有无形性、多样性和复杂性等特点,如何准确界定数据资产的范围和价值是一个难题。二是数据资产的价值受多种因素影响,如数据质量、数据应用场景等。如何确定这些因素对数据资产价值的影响程度,也是一个需要深入研究的问题。三是相关法律法规和会计准则尚不完善。目前,对于数据资产的认定和计量,还没有统一的标准和规范。为了推动数据资产入表,企业可以采取以下措施:一是建立完善的数据管理体系。提高数据质量和安全性,为数据资产的入表提供有力支持。二是加强数据资产的价值评估能力。通过引入专业的评估方法和工具,准确评估数据资产的价值。三是积极参与相关标准和规范的制定。为数据资产的入表提供参考依据。企业数据资产入表流程