您好,欢迎访问

商机详情 -

数据资产交易市场发展趋势

来源: 发布时间:2024年07月04日

在数字时代,数据成为了具价值的资产之一。然而,随着数据的快速增长和广泛应用,数据确权问题也日益凸显。数据确权,即确定数据的权利归属,对于保护数据主体的权益、促进数据的合理利用和推动数字经济的健康发展具有重要意义。数据确权的重要性不可忽视。首先,它有助于保护个人隐私。明确了数据的权利归属,个人能够更好地控制自己的数据,防止个人隐私被滥用。其次,有利于促进数据的流通和共享。在明确数据权利的基础上,企业和机构可以更放心地进行数据交易和共享,充分发挥数据的价值。此外,数据确权还能够推动数字经济的发展。一个明确的数据权属体系有助于建立公平、有序的市场环境,激发创新活力。数据确权有助于提高数据的安全性和保密性。数据资产交易市场发展趋势

数据资产交易市场发展趋势,数据资产交易平台

数据资产化的关键在于确立数据的权属、保证数据质量、建立数据流通机制和推动数据开放共享。首先,确立数据的权属是数据资产化的基础,需要建立完善的数据产权制度和法律法规体系,保障数据所有者的权益。其次,保证数据质量是数据资产化的中心,需要通过数据清洗、数据整合等手段,提高数据的准确性、完整性和可靠性。再次,羽山数据通过建立数据流通机制是数据资产化的关键,需要构建数据交易平台和数据供应链,促进数据的高效流通和应用。第三,推动数据开放共享是数据资产化的目标,需要制定数据开放政策和技术标准,鼓励企业和机构开放数据资源,实现数据的共创、共享和共赢。线上数据资产交易数据确权对于云计算有何影响?

数据资产交易市场发展趋势,数据资产交易平台

从明年起,企业应当按照企业会计准则相关规定,根据数据资源的持有目的、形成方式、业务模式,以及与数据资源有关的经济利益的预期消耗方式等,对数据资源相关交易和事项进行会计确认、计量和报告。“《暂行规定》按照会计上的经济利益实现方式,根据企业使用、对外提供服务、日常持有以备出售等不同业务模式,明确相关会计处理适用的具体准则,同时,对实务反映的一些重点问题,结合数据资源业务等实际情况予以细化。”前述负责人说。具体操作中,企业应如何列示和披露数据资源信息?根据《暂行规定》,企业在编制资产负债表时,应当根据重要性原则并结合本企业的实际情况,在“存货”项目下增设“其中:数据资源”项目,反映资产负债表日确认为存货的数据资源的期末账面价值;在“无形资产”项目下增设“其中:数据资源”项目,反映资产负债表日确认为无形资产的数据资源的期末账面价值;在“开发支出”项目下增设“其中:数据资源”项目,反映资产负债表日正在进行数据资源研究开发项目满足资本化条件的支出金额。

数字经济的发展H信,就是数据价值的发挥。数据作为数字经济建设关键要素,将对其他生产要素产生倍增效用,为经济转型发展提供新动力。“只有数据动起来才有价值。”第五届数字中国建设峰会数字城市分论坛上,中国科学院院士、中国计算机学会理事长梅宏认为,大数据时代,价值的发挥就是多元数据碰撞、融合、共享、流通。数据要素化该如何实现?梅宏提出三个递进层次的途径:***,资源化,涉及到原始数据的获取以及数据后期的加工组织,这是数据价值释放的潜力。当前,数据作为基础性、战略性资源已经得到***共识。第二,资产化,数据的资产属性需要在法律上确立,成为像不动产、物产一样可以入表的资产,目前还是空白。第三,在资产化的基础上实现资本化,而且要商品化。使得数据价值可以度量、可以交换,成为被经营的产品或者商品,以此让数据要素价值得以释放,并创造新价值。 数据确权是实现数据治理的重要一环。

数据资产交易市场发展趋势,数据资产交易平台

数据资产化是指将数据作为企业的重要资产,对其进行合理的配置、管理和使用,以实现企业的经济价值和社会价值。数据资产化是数字经济时代的必然趋势,也是企业数字化转型的**内容。数据可以变成资产,是因为数据具有以下属性:1.价值性:数据具有很高的价值,能够为企业带来很多商业机会和竞争优势。2.可控性:企业可以通过合理的管理和控制,确保数据的准确性、安全性和可靠性,从而保障企业的利益。3.稀缺性:在某些领域,数据的获取和加工需要付出很高的成本,因此具有稀缺性。4.可交易性:在数字经济时代,数据可以通过交易平台进行买卖,为企业带来更多的商业机会和收益。数据确权有助于培育数据文化,提高社会对数据的认知.数据资产

数据确权对于人工智能发展有何影响?数据资产交易市场发展趋势

    与传统资产不同,数据资产具备非实体性、依托性、可共享性、可加工性、价值易变性等多种特征。由于数据资产涉及的经济行为与传统资产较为一致,其评估目的同样可分为内部评估目的,如数据管理、会计核算等;以及外部评估目的,如数据资产交易流通、出资入股等。数据资产的评估方法包括收益法、成本法、市场法等。收益法是目前数据资产更适用的评估方法之一,根据预期收益口径可以采用直接收益、分成收益、超额收益和增量收益4种方式。对于可获得可靠财务预测、并已经实现商业化应用场景的数据资产来说,收益法能够直观地体现数据资产价值实现的过程。成本法除了确定重置成本,关键要确定数据资产价值调整系数。对于仍处于开发阶段、成本易于归集且未来收益尚未确定的数据资产来说,成本法不失为较具适用性的评估方法。但成本法未能有效考虑数据资源收益与成本不匹配的问题。市场法应用前提是具有公开并活跃的交易市场。由于目前数据资产交易主要为场外交易,缺乏成熟、活跃的数据资产公开交易市场与可比参照物,且数据资产价值受到应用场景影响较大,其价值易变性导致交易实例的可比性低,市场法使用限制较为明显。 数据资产交易市场发展趋势