信息化时代,“数据”的应用较为频繁,海量数据的组成中,备份数据占有很大比例,而这些备份数据在没有发生故障时往往是被搁置不用的,被称为“暗数据”。而对业务数据的分析、统计、运维等操作都会直接作用在业务服务器,如此将会对业务性能产生影响,不利于业务系统的高效使用。如何做到解放业务系统,使其专注于业务处理上,也是IT管理者需要考虑的另一个现实问题。备份需要从业务系统中获取数据,统计、分析需要从业务系统中获取数据,研发、测试需要从业务系统中获取数据。这些数据从业务系统中拷贝出来后,如果得不到有效的管控,将会给企业带来安全隐患,这也是用户需要考虑解决的又一现实问题。敏捷数据管理平台ADM可解决业务系统,对备份数据进行合理利用提升备份数据使用价值。本地集中备份
数据流程管理是ADM功能模块之一,主要通过灵活配置数据流转环节实现数据管理流程的自动化作业编排,ADM采用基于画布的方式默认作业流程的起止节点,根据实际需求将数据的获取、恢复、***、传输、共享、交付、销毁等各个环节对应的任务组件灵活拖动到作业画布,组成一个完整的任务流程,各任务之间支持依赖关系、延时机制以及断点处理机制,**终实现数据管理流程任务的串联组建和并行执行,达到数据管理流程的自动化执行,协助用户将数据交付流程的各个工作环节灵活地组合起来,实现数据交付的自动化,从而摆脱人工值守,达到缩减时间成本和人力成本的目标。跨异构存储ADM内置独有的高效压缩存储池,存储即压缩。
传统的备份方案大多采用周期性的“全量备份+增量备份”策略,其增量备份大多不可持续,经过一段时间就必须执行一次全量备份。因而传统的备份方案经常面临备份窗口过大的问题,而且其增量备份数据的恢复效率相对低下,因为每个时间点的恢复都依赖于上一次全备副本和上一次全备副本后的所有增量数据,恢复操作需要进行逐个迭代恢复。此外,过期增量数据的清理操作也受限于备份副本之间的依赖关系,不一定能及时被***。而长久增量备份与全量快照合成技术,即***执行全量备份,之后只对新增或改动过的数据进行增量备份,此增量备份数据是持续的,而且每个增量备份的数据副本将自动合成为全量快照副本,便于恢复。因此,长久增量备份与全量快照合成技术能够大幅度减少备份时间,节省备份数据所需的存储空间,且提升了恢复效率。长久增量备份与全量快照合成技术适用于单个应用数据量大,执行一次完全备份比较费时费力的应用场景。若用户备份数据量小,也可使用传统的全备+增备技术方式,ADM无挂载备份能够实现此方式。
l分钟级挂载恢复技术ADM压缩保存源端数据库的数据,并保留时间线,方便恢复任意时间点数据。ADM备份的全量快照为原格式,无需格式转换和IO拷贝,可直接挂载到目标主机上快速拉起应用恢复,**技术采用自研的数据库虚拟化技术通过一份数据快照作为基础数据生成黄金副本,快速挂载恢复多个虚拟副本。挂载恢复的方式**缩短了数据恢复的时间,通常业务RTO时间由小时级甚至天级,缩短到分钟级;挂载恢复降低了数据恢复所占用的存储空间,*对新写入的数据计入资源占用;由于挂载恢复速度快增加了数据恢复演练的频率,提高了备份数据有效性验证的工作效率。ADM数据备份管理可针对数据库、文件、虚拟机进行备份恢复。
ADM支持Oracle/MySQL/DB2/SQLServer/PostgreSQL/Informix/达梦/南大通用GBase/人大金仓KingBase/OpenGauss/MogDB/VastBase/丛云/TDSQL/OceanBase/GaussDB(forOpenGauss)/GaussDB(DWS)分布式容灾功能;支持华为云与阿里云的云服务器ECS、云数据库RDS备份恢复;***保护VMware/SmartX/浪潮/华为FC/云宏WinStack/OpenStack/浪潮云InCloudOpenStack等虚拟化平台,支持虚拟化备份和细粒度的挂载恢复,VMware备份无需在虚拟化平台或者各个虚拟机上安装客户端,只需通过VMware代理客户端连接虚拟化平台即可;支持Hadoop等大数据平台的备份恢复;支持自适应源端的全局重删算法与策略,支持任务级与全局指纹库;针对文件备份提供文件粒度与块级粒度的全域重删且支持重删指纹库重建功能,支持多线程文件备份,支持海量小文件场景下的聚合策略,提供并行扫描和高速索引,从而减少需要备份的数据量、缩短备份窗口、节省备份数据传输所消耗的网络带宽以及节约备份数据存储空间;备份传输过程采用压缩加密处理,缓解网络传输的压力,增加网络抖动或短时间断链的超时容错机制,确保备份数据的安全;ADM可实现备份数据任意时间点挂载恢复快速对恢复数据进行验证。关系型数据库变形
ADM备份数据恢复验证管理功能盘活了备份数据实现了跨平台恢复。本地集中备份
ADM平台具备根据管理人员、测试需求等内容的不同进行分组划分的功能,将处理过的数据进行分组管理,从下游测试数据管理的源头管控数据资源的类别,做到从源头划分类别,使下游测试数据管理形成上游数据源-中游数据中转-下游数据目标的闭环式数据使用流程,规范化的数据流程使数据管理者成为数据的负责人,自动化的资源管理也更有效地为金融行业用户提供安全的数据管理方案。同时,ADM提供对数据流转的树状拓扑结构图,可详细了解数据的来源、所属存储池、挂载的测试服务器,以及数据快照的层级关系,方便对系统全局的数据使用结构进行预览,通过可视化的结构拓扑图,帮助用户了解下游测试网中测试数据的归属关系,完善数据流转路径,优化数据资源的合理分配,可视化功能的动态展示将助力企业向着智能化数据安全治理的方向转型。本地集中备份