数字孪生技术为污水厂应对水质突发性波动提供动态调整能力。当进水水质出现异常变化时,虚拟模型能迅速响应,模拟不同应对策略下的处理效果。通过实时计算水质波动对各处理单元的冲击程度,自动生成优良调整方案,包括药剂投加量调整、处理单元负荷分配优化、应急处理单元启用等。无需依赖人工经验判断,即可快速制定科学应对措施,缩短水质恢复稳定的时间,避免因应对不及时导致的出水超标风险。同时,每次波动应对的数据都会被记录存档,为后续类似情况的处理提供参考,持续提升污水厂的应急响应能力。智慧城市领域,城市信息模型与物联网结合,能构建城市级数字孪生体。水务数字孪生技术
农业温室种植中,数字孪生技术可助力种植管理的精细化与高效化。通过构建温室的虚拟映射体,能将温室内的温度、湿度、光照强度、CO₂浓度、作物生长状态、灌溉施肥系统运行参数等信息实时映射至虚拟空间,实现物理温室与数字孪生体的实时数据交互。种植管理人员可通过数字孪生体实时查看温室内的环境参数与作物生长情况,根据作物生长需求调整环境条件,如调节遮阳网控制光照或调整加湿器增加湿度,为作物生长创造适宜环境。同时,数字孪生能模拟不同环境条件下的作物生长周期与产量,如调整温度或施肥量对作物成熟时间的影响,为制定科学种植计划提供依据。此外,通过对温室设备运行数据的监测,可及时发现灌溉系统堵塞或温控设备故障,减少设备故障对作物生长的影响,提升温室种植的产量与品质。江宁数字孪生公司为员工培训和技能提升提供了高度仿真的沉浸式环境。

数字孪生构建知识管理体系,通过沉淀运营过程中的经验数据、最佳实践,实现知识的传承与复用。数字孪生体记录运营过程中的各类数据,包括设备故障处理案例、生产流程优化方案、人员作业经验、应急处置预案等,构建数字化知识库。通过数据分析提炼出可复用的最佳实践,如设备较优运行参数、标准化作业流程、高效应急处置方案等,推广应用于全企业。同时,知识库支持快速检索与共享,员工可随时查询所需知识,如维修人员查找设备故障处理方法、新员工学习标准化作业流程等。这种数字化知识管理模式,促进了知识的传承与复用,提升了整体运营管理水平。
数字孪生技术可与人工智能算法深度融合,提升污水厂工艺优化的智能化水平。通过虚拟模型积累的海量运行数据,为 AI 算法提供充足训练样本,让算法能更准确地挖掘工艺参数与处理效果、能耗之间的潜在关联。基于训练成熟的 AI 模型,数字孪生可实现工艺参数的自动优化,根据进水水质、水量变化,实时调整各处理单元的运行参数,无需人工干预即可维持处理效果稳定与能耗至优。这种 “数字孪生 + AI” 的模式,能让工艺优化从 “定期调整” 转向 “实时动态优化”,大幅提升污水厂的运营效率与智能化管理水平。数字孪生构建污水厂生产设备的三维场景。

数字孪生技术优化环保工程建设管控,通过构建环保工程项目(如水处理站、生态修复工程)的数字模型,整合设计图纸、施工进度、物料供应、质量检测等信息。模型能模拟施工流程,提前发现设计与施工中的争执问题,优化施工方案;同时,实时跟踪施工进度,对比计划与实际进度差异,分析延误原因并提示调整措施,确保工程按时交付。此外,数字孪生可记录施工过程中的质量检测数据,形成工程质量追溯档案,为后续运维提供依据,提升环保工程建设质量。数字孪生借助科学流程简化污水厂管理流程。污水治理数字孪生
促进产品设计、生产制造、售后服务等全链条的协同与创新。水务数字孪生技术
数字孪生技术可优化污水厂的能耗结构,实现能源的高效利用。通过实时采集各设备的能耗数据,在虚拟模型中构建能耗分布图谱,清晰呈现高能耗环节与低效用能设备。基于能耗图谱,能制定针对性的节能策略,调整设备运行时序,让高能耗设备避开用电高峰时段运行,或根据处理负荷变化动态调整设备运行功率,减少无效能耗。同时,虚拟模型还能模拟不同节能改造方案的效果,预测改造后的能耗降低幅度与投资回收期,为节能改造决策提供科学依据,助力污水厂向低碳运营转型。水务数字孪生技术