您好,欢迎访问

商机详情 -

矩子科技aoi

来源: 发布时间:2025年06月16日

AOI 的低误判率特性降低人工复判成本,爱为视 SM510 通过 “多级验证算法” 减少误报,即对疑似缺陷先由卷积神经网络初筛,再通过支持向量机(SVM)进行特征二次校验,结合元件工艺规则(如焊盘尺寸、引脚间距)进行逻辑判断。以 “锡珠” 检测为例,传统 AOI 可能将焊盘周围的反光点误判为缺陷,而该设备通过多算法融合,可根据锡珠的形状、灰度值及与焊盘的距离等多维特征识别,误判率低于 0.5%,使人工复判工作量减少 80% 以上,尤其适合对检测精度要求极高的医疗设备 PCBA 生产。AOI检测速度0.22秒/FOV,配1200W全彩相机,分辨率9μ,输出高质量图像。矩子科技aoi

矩子科技aoi,AOI

AOI 的应用场景灵活性是其竞争力之一,爱为视 SM510 支持回流焊炉前、炉后检测,可根据工艺需求灵活部署。炉前检测重点排查元件贴装缺陷(如偏移、缺件),避免不良流入焊接环节;炉后检测则专注焊锡缺陷(如连锡、假焊),实现全流程质量管控。此外,设备支持单段或多段式轨道设计,进出方向可选,可无缝对接不同产线布局,适应各类电子制造企业的车间规划。AOI 操作流程极简,新建模板至启动识别四步,提升易用性,适合大规模生产应用。视源aoiAOI技术通过高速摄像头与算法分析,实现电路板焊点的全自动化检测与缺陷标记。

矩子科技aoi,AOI

AOI 的字符识别功能在追溯与品质管理中发挥重要作用,爱为视 SM510 集成先进的 OCR(光学字符识别)算法,可识别 PCBA 上的元件丝印、批次号、生产日期等字符信息。通过对比预设的标准字符库,系统能快速检测字符模糊、缺失、错误等问题,例如识别电阻上的阻值标识是否与设计文件一致,或电容上的极性标记是否正确。这些信息不用于缺陷判定,还可与 SPC 系统结合,分析字符印刷工艺的稳定性,为上游供应商管理提供数据依据。AOI 智能判定通过深度神经网络分析图像,减少人工干预,提升检测一致性与客观性。

为了进一步提高AOI的检测能力和准确性,多传感器融合技术逐渐得到应用。AOI系统除了利用光学传感器外,还可以结合其他类型的传感器,如激光传感器、超声波传感器等。激光传感器可以用于测量物体的三维尺寸和形状,弥补光学传感器在深度信息获取方面的不足。超声波传感器则可以检测物体内部的缺陷,如裂纹、气孔等。通过将多种传感器的数据进行融合处理,能够更、准确地获取被检测物体的信息。例如,在检测一个复杂形状的金属零件时,光学传感器可以检测零件表面的缺陷和纹理,激光传感器可以测量零件的三维尺寸,超声波传感器可以检测零件内部的缺陷,将这些信息融合后,能够对零件的质量进行更、深入的评估。AOI系统可与SPI(焊膏检测)设备联动,构建全流程品质管控体系。

矩子科技aoi,AOI

AOI(自动光学检测)设备在 SMT 生产中扮演着关键角色,爱为视 SM510 SMT 智能 AOI 凭借全球无需设置参数的特性脱颖而出。其优势在于搭载深度神经网络算法,通过高精度工业相机实时抓取 PCBA 图像,可一键完成智能搜索与编程,降低操作门槛。例如,传统 AOI 需人工调试阈值、模板等参数,而该设备通过先进的卷积神经网络和深度学习模型,自动识别元件特征,实现错件、反向、缺件等缺陷的智能判定,大幅提升生产效率。AOI 操作流程极简,新建模板至启动识别四步,提升易用性,适合大规模生产应用。AOI伺服电机丝杆传动高速低磨损,保证设备稳定运行,降低维护频率与成本。aoi全检

AOI设备通过定期校准与维护,持续保持稳定的检测性能与精度水平。矩子科技aoi

AOI的技术原理基于光学成像和图像处理。首先,光源会以特定的角度和强度照射到被检测物体表面,物体反射或透射的光线通过光学镜头聚焦成像在图像传感器上。图像传感器将光信号转换为电信号,并进一步转化为数字图像数据。随后,图像处理算法开始发挥作用,这些算法会对图像进行灰度化、滤波、边缘检测、特征提取等一系列操作。通过与预先设定的标准图像或特征参数进行对比,从而判断被检测物体是否存在缺陷以及缺陷的类型和位置。例如,在检测一个金属零件的表面划痕时,算法会根据划痕处与正常表面的灰度差异、边缘特征等信息,准确识别出划痕并测量其长度和宽度。矩子科技aoi

标签: AOI