您好,欢迎访问

商机详情 -

安徽智能音响声学回声通话

来源: 发布时间:2022年12月21日

    非线性声学回声消除的技术难点我从6个不同的维度比较了线性的和非线性这两种回声消除问题。首先个维度,系统传递函数。在线性系统里面,我们认为系统传递函数是一个缓慢时变的系统,我们可以通过自适应滤波的方式去逼近这个传递函数,来有效抑制回声。而在非线性系统里面,系统传递函数通常是快变、突变的,我们如果用线性的方法去逼近的话,会出现滤波器的更新速度,跟不上系统传递函数变化的速度,就会导致声学回声消除不理想。第二个维度是优化模型,在线性里面我们是有一套非常完备的线性优化模型,从目标函数的构建到系统优化问题的求解,整个脉络是很清晰的。而在非线性的系统里面,目前是缺少一种有效的模型来对它进行支撑的。接下来的四个维度对应4个问题,它们是线性回声消除领域普遍存在的4个难点问题。这些问题在非线性领域也同样存在。比如强混响问题,我们如果在一个小型会议室里开视频会议。那么声音会经过多次墙壁反射,带来很强的混响,混响的拖尾时间会很长。如果想抑制这样的强混响回声,就需要把线性滤波器的长度加长。这样会带来一个新的问题:按照Widrow的自适应滤波理论,滤波器的长度越长,其收敛速度越慢,同时权噪声越大。 深入浅出 WebRTC AEC(声学回声消除)。安徽智能音响声学回声通话

  为什么要费那么大周折去抑制回声?这个话题应该不言而喻了。会议、语音扩声讲究的即是STI语音清晰度(可懂度),而回声是语言清晰度的比较大。设想踩脚跟式的语音信号传达到耳朵,听者难受,讲者费劲,对于这样的语音会议来说,那必将是一场灾难。我们把声学回声消除这个技术变成一张实体的插件(设备插卡),在系统中,为实现次回声过滤(过滤回声源则过滤多次回声)。这个技术应该插入在系统的哪个环节呢?我们不妨来找找系统中具备近乎相同/相似信号的一级进出环节。我们并不难发现一组具备相似信号的输入输出环节。而AEC技术认为,在这里对回声下手是治根的办法!市面上有多种类的回声消除器,也有部分抑制器,其算法和解决办法各有不同,本文就不详细阐释了。须知,通过对具有相似性极高的输入、输出信号的比对,约掉这一具备相似信号的输出,即切断了回授的根源,A地将不再听到回声现象。江苏手机声学回声祛混响算法回到前面的这个声学回声路径图。

    3.双耦合滤波器设计当滤波器的结构确定下来之后,我们要去设计滤波器系数了。设计过程我把它总结成了三步,第一步就是构建优化准则,第二步是求解滤波器的权系数——Wl和Wn,一步就是构建耦合机制。第一步就是构建优化准则。我觉得构建优化准则,应该是整个滤波器设计里面重要的一步,因为它决定了滤波器性能的上限。什么样的优化准则是一个好的优化准则呢?我觉得好的优化准则需要跟问题的物理特性有效匹配起来,所以在构建优化准则之前,我们先对非线性声学回声的特性进行分析,希望通过这种分析去挖掘非线性声学回声的一些物理特性。我们的分析是基于上面的函数,我们称它为短时相关度,它所表示的是两个信号,在一个短时的观测时间窗“T”这样一个尺度范围内的波形的相似程度,需要注意的是这个函数它是统计意义上的,因为我们对它进行了数学期望运算。同时在分子的一项我们还加了一个相位校正因子,目的是为了将这两路信号的初始相位对齐。基于前面构建的短时相关度函数,我们对大量声学回声数据进行分析,并挑选了几组比较典型的数据:绿色的曲线对应的是一组线性度非常好的回声数据。我们从这个数据上可以看到,在整个时间T的变化范围内,它的短时相关度都非常高。

    

    AEC定义声学回声(AcousticEcho)电话的扬声器的声音(包括反射声),被麦克风拾取传送给远端,使得远端说话人又听到自己的声音,广义回声指的是设备喇叭和自身麦克风的耦合现象都称为回声。回声消除AEC(AcousticEchoCancellation)一般指的是声学回声消除,其主要用于抑制产品本身发出的声音,使得产品在播放音频时依然可以进行语音交互;随着秒新月异的科技发展,各项技术成果不断地应用在我们日益拓展的各领域需求当中,刷新着我们的生活和工作。地球村的崛起,不断以互联网、物联网等方式揭示着万物相连的关系。无论是飞机、高铁还是电话、网络,都成为托起地球新村时空纵横的重要载体。怎样拉近人与人之间的关系,如何建立起更行之有效的联络方式,提高远程协同工作、信息传达效率成为了一个重要命题。远程会议的出现在很大程度上为这种多极化办公互动提供了质量的平台保障,在借助互联网便捷的远程通信架构下,通讯数据安全,稳定可靠,很长一段时间广受用户青睐。然而美中不足的是,这样的(声音)系统仍逃不出的还是自然声学上的问题。有和业内朋友聊天中谈到,今后的扩声系统也许只保留两级传统装置了,那就是声电转换和电声转换的拾音和还原。

    如何处理非线性声学回声消除,效果又如何?

    非线性声学回声产生的原因非线性声学回声产生的原因,我一共列了两条原因。原因之一,声学器件的小型化与廉价化,这里所指的声学器件就是前面B里面提到的功率放大器和喇叭。为什么声学器件的小型化容易产生非线性的失真呢?这个需要从喇叭发声的基本原理说起,我们都知道声波的本质是一种物理振动,而喇叭发声的基本原理就是通过电流来驱动喇叭的振膜发生振动之后,这个振膜会带动周围的空气分子相应发生振动,这样就产生了声音。如果我们要发出一个大的声音的话,那么就需要在单位时间内用更多的电流去驱动更多的空气分子发生振动。假设有大小不同的两个喇叭,他们用同样的功率去驱动,对于大喇叭而言,由于它跟空气接触的面积要大一些,所以他在单位时间内能够带动更多的空气分子振动,所以它发出来的声音也会大一些。而小喇叭如果想发出跟大喇叭一样大的声音,就需要加大驱动功率,这样会带来一个问题:我们的功率放大器件会进入到一种饱和失真的状态,由此就会带来非线性的失真。这就是声学器件小型化容易产生非线性失真的一个主要的原因。这里廉价化比较好理解了,就不多说了。原因之二。就是声学结构设计的不合理。典型的一个实例就是声学系统的隔振设计不合理。

     声学回声消除,其主要用于抑制产品本身发出的声音。上海机器人唤醒声学回声交互

声学回声消除应用技术。安徽智能音响声学回声通话

    n)为加混响的远端参考信号x(n)+近端语音信号s(n)。理论上NLMS在处理这种纯线性叠加的信号时,可以不用非线性部分出马,直接干掉远端回声信号。图7(a)行为近端信号d(n),第二列为远端参考信号x(n),线性部分输出结果,黄色框中为远端信号。WebRTCAEC中采用固定步长的NLMS算法收敛较慢,有些许回声残留。但是变步长的NLMS收敛较快,回声抑制相对好一些,如图7(b)。线性滤波器参数设置#defineFRAME_LEN80#definePART_LEN64enum{kExtendedNumPartitions=32};staticconstintkNormalNumPartitions=12;FRAME_LEN为每次传给音频3A模块的数据的长度,默认为80个采样点,由于WebRTCAEC采用了128点FFT,内部拼帧逻辑会取出PART_LEN=64个样本点与前一帧剩余数据连接成128点做FFT,剩余的16点遗留到下一次,因此实际每次处理PART_LEN个样本点(4ms数据)。默认滤波器阶数为kNormalNumPartitions=12个,能够覆盖的数据范围为kNormalNumPartitions*4ms=48ms,如果打开扩展滤波器模式(设置extended_filter_enabled为true),覆盖数据范围为kNormalNumPartitions*4ms=132ms。随着芯片处理能力的提升,默认会打开这个扩展滤波器模式,甚至扩展为更高的阶数。

    安徽智能音响声学回声通话

深圳鱼亮科技有限公司坐落于龙华街道清华社区建设东路青年创业园B栋3层12号,是集设计、开发、生产、销售、售后服务于一体,通信产品的服务型企业。公司在行业内发展多年,持续为用户提供整套智能家居,语音识别算法,机器人交互系统,降噪的解决方案。公司具有智能家居,语音识别算法,机器人交互系统,降噪等多种产品,根据客户不同的需求,提供不同类型的产品。公司拥有一批热情敬业、经验丰富的服务团队,为客户提供服务。Bothlent集中了一批经验丰富的技术及管理专业人才,能为客户提供良好的售前、售中及售后服务,并能根据用户需求,定制产品和配套整体解决方案。深圳鱼亮科技有限公司通过多年的深耕细作,企业已通过通信产品质量体系认证,确保公司各类产品以高技术、高性能、高精密度服务于广大客户。欢迎各界朋友莅临参观、 指导和业务洽谈。

扩展资料

声学回声热门关键词

声学回声企业商机

声学回声行业新闻

推荐商机