纯粹从语音识别和自然语言理解的技术乃至功能的视角看这款产品,相对于等并未有什么本质性改变,变化只是把近场语音交互变成了远场语音交互。正式面世于销量已经超过千万,同时在扮演类似角色的渐成生态,其后台的第三方技能已经突破10000项。借助落地时从近场到远场的突破,亚马逊一举从这个赛道的落后者变为行业。但自从远场语音技术规模落地以后,语音识别领域的产业竞争已经开始从研发转为应用。研发比的是标准环境下纯粹的算法谁更有优势,而应用比较的是在真实场景下谁的技术更能产生优异的用户体验,而一旦比拼真实场景下的体验,语音识别便失去存在的价值,更多作为产品体验的一个环节而存在。语音识别似乎进入了一个相...
共振峰的位置、带宽和幅度决定元音音色,改变声道形状可改变共振峰,改变音色。语音可分为浊音和清音,其中浊音是由声带振动并激励声道而得到的语音,清音是由气流高速冲过某处收缩的声道所产生的语音。语音的产生过程可进一步抽象成如图1-2所示的激励模型,包含激励源和声道部分。在激励源部分,冲击序列发生器以基音周期产生周期性信号,经过声带振动,相当于经过声门波模型,肺部气流大小相当于振幅;随机噪声发生器产生非周期信号。声道模型模拟口腔、鼻腔等声道qi官,后产生语音信号。我们要发浊音时,声带振动形成准周期的冲击序列。发清音时,声带松弛,相当于发出一个随机噪声。图1-2产生语音的激励模型,人耳是声音的感...
并能产生兴趣投身于这个行业。语音识别的技术历程现代语音识别可以追溯到1952年,Davis等人研制了世界上个能识别10个英文数字发音的实验系统,从此正式开启了语音识别的进程。语音识别发展到已经有70多年,但从技术方向上可以大体分为三个阶段。下图是从1993年到2017年在Switchboard上语音识别率的进展情况,从图中也可以看出1993年到2009年,语音识别一直处于GMM-HMM时代,语音识别率提升缓慢,尤其是2000年到2009年语音识别率基本处于停滞状态;2009年随着深度学习技术,特别是DNN的兴起,语音识别框架变为DNN-HMM,语音识别进入了DNN时代,语音识别精细...
用来描述双重随机过程。HMM有算法成熟、效率高、易于训练等优点,被***应用于语音识别、手写字识别和天气预报等多个领域,目前仍然是语音识别中的主流技术。HMM包含S1、S2、S3、S4和S55个状态,每个状态对应多帧观察值,这些观察值是特征序列(o1、o2、o3、o4,...,oT),沿时刻t递增,多样化而且不局限取值范围,因此其概率分布不是离散的,而是连续的。自然界中的很多信号可用高斯分布表示,包括语音信号。由于不同人发音会存在较大差异,具体表现是,每个状态对应的观察值序列呈现多样化,单纯用一个高斯函数来刻画其分布往往不够,因此更多的是采用多高斯组合的GMM来表征更复杂的分布。这种用...
传统的人机交互依靠复杂的键盘或按钮来实现,随着科技的发展,一些新型的人机交互方式也随之诞生,带给人们全新的体验。基于语音识别的人机交互方式是目前热门的技术之一。但是语音识别功能算法复杂、计算量大,一般在计算机上实现,即使是嵌入式方面,多数方案也需要运算能力强的ARM或DSP,并且外扩RAM、FLASH等资源,增加了硬件成本,这些特点无疑限制了语音识别技术的应用,尤其是嵌入式领域。本系统采用的主控MCU为Atmel公司的ATMEGA128,语音识别功能则采用ICRoute公司的单芯片LD3320。LD3320内部集成优化过的语音识别算法,无需外部FLASH,RAM资源,可以很好地完成...
比如兼容性方面新兴公司做的会更加彻底,这种兼容性对于一套产品同时覆盖国内国外市场是相当有利的。类比过去的Android,语音交互的平台提供商们其实面临更大的挑战,发展过程可能会更加的曲折。过去经常被提到的操作系统的概念在智能语音交互背景下事实上正被赋予新的内涵,它日益被分成两个不同但必须紧密结合的部分。过去的Linux以及各种变种承担的是功能型操作系统的角色,而以Alexa为的新型系统则承担的则是智能型系统的角色。前者完成完整的硬件和资源的抽象和管理,后者则让这些硬件以及资源得到具体的应用,两者相结合才能输出终用户可感知的体验。功能型操作系统和智能型操作系统注定是一种一对多的关系,...
我们可以用语音跟它们做些简单交流,完成一些简单的任务等等。语音识别技术的应用领域:汽车语音控制当我们驾驶汽车在行驶过程中,必须时刻握好方向盘,但是难免有时候遇到急事需要拨打电话这些,这时候运用汽车上的语音拨号功能的免提电话通信方式便可简单实现。此外,对汽车的卫星导航定位系统(GPS)的操作,汽车空调、照明以及音响等设备的操作,同样也可以用语音的方式进行操作。语音识别技术的应用领域:工业控制及医疗领域在工业及医疗领域上,运用智能语音交互,能够让我们解放双手,只需要对机器发出命令,就可以让其操作完成需要的任务。提升了工作的效率。语音识别技术在个人助理、智能家居等很多领域都有运用到,随着语音...
然后在Reg_RW.c文件中找到HARD_PARA_PORT对应条件宏的代码段,保留AVR的SPI接口代码。3.2应用程序实现在代码中预先设定几个单词:“你好”,“播放音乐”,“打开”。当用户说“播放音乐”时,MCU控制LD3320播放一段音乐,如果是其他词语,则在串口中打印识别结果,然后再次转换到语音识别状态。3.2.1MP3播放代码LD3320支持MP3数据播放,播放声音的操作顺序为:通用初始化→MP3播放用初始化→调节播放音量→开始播放。将MP3数据顺序放入数据寄存器,芯片播放完一定数量的数据时会发出中断请求,在中断函数中连续送入声音数据,直到声音数据结束。MP3播放函数实现代码...
美国**部下属的一个名为美国**高级研究计划局(DefenseAdvancedResearchProjectsAgency,DARPA)的行政机构,在20世纪70年代介入语音领域,开始资助一项旨在支持语言理解系统的研究开发工作的10年战略计划。在该计划推动下,诞生了一系列不错的研究成果,如卡耐基梅隆大学推出了Harpy系统,其能识别1000多个单词且有不错的识别率。第二阶段:统计模型(GMM-HMM)到了20世纪80年代,更多的研究人员开始从对孤立词识别系统的研究转向对大词汇量连续语音识别系统的研究,并且大量的连续语音识别算法应运而生,例如分层构造(LevelBuilding)算法等。...
纯粹从语音识别和自然语言理解的技术乃至功能的视角看这款产品,相对于等并未有什么本质性改变,变化只是把近场语音交互变成了远场语音交互。正式面世于销量已经超过千万,同时在扮演类似角色的渐成生态,其后台的第三方技能已经突破10000项。借助落地时从近场到远场的突破,亚马逊一举从这个赛道的落后者变为行业。但自从远场语音技术规模落地以后,语音识别领域的产业竞争已经开始从研发转为应用。研发比的是标准环境下纯粹的算法谁更有优势,而应用比较的是在真实场景下谁的技术更能产生优异的用户体验,而一旦比拼真实场景下的体验,语音识别便失去存在的价值,更多作为产品体验的一个环节而存在。语音识别似乎进入了一个相...
先行者叮咚音箱的出师不利,更是加重了其它人的观望心态。真正让众多玩家从观望转为积极参与的转折点是逐步曝光的Echo销量,近千万的美国销量让整个世界震惊。这是智能设备从未达到过的高点,在Echo以前除了AppleWatch与手环,像恒温器、摄像头这样的产品突破百万销量已是惊人表现。这种销量以及智能音箱的AI属性促使下半年,国内各大巨头几乎是同时转度,积极打造自己的智能音箱。未来,回看整个发展历程,是一个明确的分界点。在此之前,全行业是突飞猛进,之后则开始进入对细节领域渗透和打磨的阶段,人们关注的焦点也不再是单纯的技术指标,而是回归到体验,回归到一种“新的交互方式到底能给我们带来什么价...
Google将其应用于语音识别领域,取得了非常好的效果,将词错误率降低至。如下图所示,Google提出新系统的框架由三个部分组成:Encoder编码器组件,它和标准的声学模型相似,输入的是语音信号的时频特征;经过一系列神经网络,映射成高级特征henc,然后传递给Attention组件,其使用henc特征学习输入x和预测子单元之间的对齐方式,子单元可以是一个音素或一个字。,attention模块的输出传递给Decoder,生成一系列假设词的概率分布,类似于传统的语言模型。端到端技术的突破,不再需要HMM来描述音素内部状态的变化,而是将语音识别的所有模块统一成神经网络模型,使语音识别朝...
应用背景随着信息时代的到来,语音技术、无纸化技术发展迅速,但是基于会议办公的应用场景,大部分企业以上技术应用都不够广,会议办公仍存在会议记录强度高、出稿准确率低,会议工作人员压力大等问题。为解决上述问题,智能语音识别编译管理系统应运而生。智能语音识别编译管理系统的主要功能是会议交流场景下语音实时转文字,解决了人工记录会议记要易造成信息偏差、整理工作量大、重要会议信息得不到体系化管控、会议发言内容共享不全等问题,提升语音技术在会议中的应用水平,切实提升会议的工作效率。实现功能智能语音识别编译管理系统对会议信息进行管理,实现实时(历史)会议语音转写和在线编辑;实现角色分离、自动分段、关键词...
已有20年历史了,在Github和SourceForge上都已经开源了,而且两个平台上都有较高的活跃度。(2)Kaldi从2009年的研讨会起就有它的学术根基了,现在已经在GitHub上开源,开发活跃度较高。(3)HTK始于剑桥大学,已经商用较长时间,但是现在版权已经不再开源软件了。它的新版本更新于2015年12月。(4)Julius起源于1997年,一个主版本发布于2016年9月,主要支持的是日语。(5)ISIP是新型的开源语音识别系统,源于密西西比州立大学。它主要发展于1996到1999年间,版本发布于2011年,遗憾的是,这个项目已经不复存在。语音识别技术研究难点目前,语音识别研...
纯粹从语音识别和自然语言理解的技术乃至功能的视角看这款产品,相对于等并未有什么本质性改变,变化只是把近场语音交互变成了远场语音交互。正式面世于销量已经超过千万,同时在扮演类似角色的渐成生态,其后台的第三方技能已经突破10000项。借助落地时从近场到远场的突破,亚马逊一举从这个赛道的落后者变为行业。但自从远场语音技术规模落地以后,语音识别领域的产业竞争已经开始从研发转为应用。研发比的是标准环境下纯粹的算法谁更有优势,而应用比较的是在真实场景下谁的技术更能产生优异的用户体验,而一旦比拼真实场景下的体验,语音识别便失去存在的价值,更多作为产品体验的一个环节而存在。语音识别似乎进入了一个相...
随着语音识别技术的不断发展和进步,也应用到越来越多的产品跟领域中。它们都少不了语音识别芯片、语音识别模块的支持。那么市面上有哪些语音识别模块好用呢?哪些领域又运用到语音识别技术呢?语音识别模块具有语音识别及播报功能,需要挂spl-Flash,存储词条或者语音播放内容。还具备有工业级性能,同时还具有识别率高、简单易用、更新词条方便等优势。语音识别模块被广泛应用在AI人工智能产品、智能家居遥控、智能玩具等多种领域上。语音识别技术应用领域有哪些语音识别技术的应用领域:智能家电遥控如今很多家电都已经智能化了,用一个小小的遥控器就可以把家里所有的电器用语音操控起来,比如客厅的电视、空调、窗帘等。...
共振峰的位置、带宽和幅度决定元音音色,改变声道形状可改变共振峰,改变音色。语音可分为浊音和清音,其中浊音是由声带振动并激励声道而得到的语音,清音是由气流高速冲过某处收缩的声道所产生的语音。语音的产生过程可进一步抽象成如图1-2所示的激励模型,包含激励源和声道部分。在激励源部分,冲击序列发生器以基音周期产生周期性信号,经过声带振动,相当于经过声门波模型,肺部气流大小相当于振幅;随机噪声发生器产生非周期信号。声道模型模拟口腔、鼻腔等声道qi官,后产生语音信号。我们要发浊音时,声带振动形成准周期的冲击序列。发清音时,声带松弛,相当于发出一个随机噪声。图1-2产生语音的激励模型,人耳是声音的感...
语音识别是一门综合性学科,涉及的领域非常广,包括声学、语音学、语言学、信号处理、概率统计、信息论、模式识别和深度学习等。语音识别的基础理论包括语音的产生和感知过程、语音信号基础知识、语音特征提取等,关键技术包括高斯混合模型(GaussianMixtureModel,GMM)、隐马尔可夫模型(HiddenMarkovModel,HMM)、深度神经网络(DeepNeuralNetwork,DNN),以及基于这些模型形成的GMM-HMM、DNN-HMM和端到端(End-to-End,E2E)系统。语言模型和解码器也非常关键,直接影响语音识别实际应用的效果。为了让读者更好地理解语音信号的特性,...
作为人机交互领域重要的研究对象,语音识别技术已经成为信息社会不可或缺的组成部分。目前基于在线引擎和语音芯片实现的语音技术方案,其适用性和使用成本均限制了技术的应用和推广。通过对离线语音识别引擎的研究,结合特定领域内的应用特点,提出一套适用性强,成本较低的语音识别解决方案,可以在离线的网络环境中,实现非特定人的连续语音识别功能。根据本方案设计语音拨号软件,并对语音拨号软件的功能进行科学的测试验证。语音识别技术,又称为自动语音识别(AutomaticSpeechRecognition,ASR),它是以语音为研究对象,通过语音信号处理和模式识别让机器理解人类语言,并将其转换为计算机可输入的数...
并能产生兴趣投身于这个行业。语音识别的技术历程现代语音识别可以追溯到1952年,Davis等人研制了能识别10个英文数字发音的实验系统,从此正式开启了语音识别的进程。语音识别发展已经有70多年,但从技术方向上可以大体分为三个阶段。从1993年到2017年在Switchboard上语音识别率的进展情况,从图中也可以看出1993年到2009年,语音识别一直处于GMM-HMM时代,语音识别率提升缓慢,尤其是2000年到2009年语音识别率基本处于停滞状态;2009年随着深度学习技术,特别是DNN的兴起,语音识别框架变为DNN-HMM,语音识别进入了DNN时代,语音识别准率得到了提升;2015...
所有语音交互产品都是端到端打通的产品,如果每家厂商都从这些基础技术来打造产品,那就每家都要建立自己云服务稳定,确保响应速度,适配自己所选择的硬件平台,逐项整合具体的内容(比如音乐、有声读物)。这从产品方或者解决方案商的视角来看是不可接受的。这时候就会催生相应的平台服务商,它要同时解决技术、内容接入和工程细节等问题,终达成试错成本低、体验却足够好的目标。平台服务并不需要闭门造车,平台服务的前提是要有能屏蔽产品差异的操作系统,这是AI+IOT的特征,也是有所参照的,亚马逊过去近10年里是同步着手做两件事:一个是持续推出面向终端用户的产品,比如Echo,EchoShow等;一个是把所有产品所...
还可能存在语种混杂现象,如中英混杂(尤其是城市白领)、普通话与方言混杂,但商业机构在这方面的投入还不多,对于中英混杂语音一般*能识别简单的英文词汇(如"你家Wi-Fi密码是多少"),因此如何有效提升多语种识别的准确率,也是当前语音识别技术面临的挑战之一。语音识别建模方法语音识别建模方法主要分为模板匹配、统计模型和深度模型几种类型,以下分别介绍DTW、GMM-HMM、DNN-HMM和端到端模型。往往会因为语速、语调等差异导致这个词的发音特征和时间长短各不相同。这样就造成通过采样得到的语音数据在时间轴上无法对齐的情况。如果时间序列无法对齐,那么传统的欧氏距离是无法有效地衡量出这两个序列间真...
但依然流畅、准确。整体使用下来,直观感受是在语音输入的大前提下、结合了谷歌翻译等类似的翻译软件,实时翻译、准翻译。在这两种模式下,完成输入后,同样可以像普通话模式一样,轻点VOICEM380语音识别键,对内容进行终的整合调整。同样,准确度相当ok。我挑战了一下,普通话模式在输入长度上的极限。快速读了一段文字,单次普通话模式的输入极限是一分零三秒、316个字符。时长上完全实现了官方的宣传,字符长度上,目测是因为个人语速不够,而受到了限制。类似的,我测试了一下,VOICEM380语音识别功能在距离上的极限。在相同语速、相同音量下,打开语音识别功能,不断后退,在声源与电脑中间不存在障碍的情况...
然后在Reg_RW.c文件中找到HARD_PARA_PORT对应条件宏的代码段,保留AVR的SPI接口代码。3.2应用程序实现在代码中预先设定几个单词:“你好”,“播放音乐”,“打开”。当用户说“播放音乐”时,MCU控制LD3320播放一段音乐,如果是其他词语,则在串口中打印识别结果,然后再次转换到语音识别状态。3.2.1MP3播放代码LD3320支持MP3数据播放,播放声音的操作顺序为:通用初始化→MP3播放用初始化→调节播放音量→开始播放。将MP3数据顺序放入数据寄存器,芯片播放完一定数量的数据时会发出中断请求,在中断函数中连续送入声音数据,直到声音数据结束。MP3播放函数实现代码...
在过去功能型操作系统的打造过程中,国内的程序员们更多的是使用者的角色,但智能型操作系统虽然也可以参照其他,但这次必须自己来从头打造完整的系统。(国外巨头不管在中文相关的技术上还是内容整合上事实上都非常薄弱,不存在国内市场的可能性)随着平台服务商两边的问题解决的越来越好,基础的计算模式则会逐渐发生改变,人们的数据消费模式会与不同。个人的计算设备(当前主要是手机、笔记本、Pad)会根据不同场景进一步分化。比如在车上、家里、酒店、工作场景、路上、业务办理等会根据地点和业务进行分化。但分化的同时背后的服务则是统一的,每个人可以自由的根据场景做设备的迁移,背后的服务虽然会针对不同的场景进行优...
因此在平台服务上反倒是可以主推一些更为面向未来、有特色的基础服务,比如兼容性方面新兴公司做的会更加彻底,这种兼容性对于一套产品同时覆盖国内国外市场是相当有利的。类比过去的Android,语音交互的平台提供商们其实面临更大的挑战,发展过程可能会更加的曲折。过去经常被提到的操作系统的概念在智能语音交互背景下事实上正被赋予新的内涵,它日益被分成两个不同但必须紧密结合的部分。过去的Linux以及各种变种承担的是功能型操作系统的角色,而以Alexa的新型系统则承担的则是智能型系统的角色。前者完成完整的硬件和资源的抽象和管理,后者则让这些硬件以及资源得到具体的应用,两者相结合才能输出终用户可感知的...
所有语音交互产品都是端到端打通的产品,如果每家厂商都从这些基础技术来打造产品,那就每家都要建立自己云服务稳定,确保响应速度,适配自己所选择的硬件平台,逐项整合具体的内容(比如音乐、有声读物)。这从产品方或者解决方案商的视角来看是不可接受的。这时候就会催生相应的平台服务商,它要同时解决技术、内容接入和工程细节等问题,终达成试错成本低、体验却足够好的目标。平台服务并不需要闭门造车,平台服务的前提是要有能屏蔽产品差异的操作系统,这是AI+IOT的特征,也是有所参照的,亚马逊过去近10年里是同步着手做两件事:一个是持续推出面向终端用户的产品,比如Echo,EchoShow等;一个是把所有产品所...
我们可以用语音跟它们做些简单交流,完成一些简单的任务等等。语音识别技术的应用领域:汽车语音控制当我们驾驶汽车在行驶过程中,必须时刻握好方向盘,但是难免有时候遇到急事需要拨打电话这些,这时候运用汽车上的语音拨号功能的免提电话通信方式便可简单实现。此外,对汽车的卫星导航定位系统(GPS)的操作,汽车空调、照明以及音响等设备的操作,同样也可以用语音的方式进行操作。语音识别技术的应用领域:工业控制及医疗领域在工业及医疗领域上,运用智能语音交互,能够让我们解放双手,只需要对机器发出命令,就可以让其操作完成需要的任务。提升了工作的效率。语音识别技术在个人助理、智能家居等很多领域都有运用到,随着语音...
语音识别包括两个阶段:训练和识别。不管是训练还是识别,都必须对输入语音预处理和特征提取。训练阶段所做的具体工作是收集大量的语音语料,经过预处理和特征提取后得到特征矢量参数,通过特征建模达到建立训练语音的参考模型库的目的。而识别阶段所做的主要工作是将输入语音的特征矢量参数和参考模型库中的参考模型进行相似性度量比较,然后把相似性高的输入特征矢量作为识别结果输出。这样,终就达到了语音识别的目的。语音识别的基本原理是现有的识别技术按照识别对象可以分为特定人识别和非特定人识别。特定人识别是指识别对象为专门的人,非特定人识别是指识别对象是针对大多数用户,一般需要采集多个人的语音进行录音和训练,经过...
需要及时同步更新本地语法词典,以保证离线语音识别的准度;(3)音频数据在离线引擎中的解析占用CPU资源,因此音频采集模块在数据采集时,需要开启静音检测功能,将首端的静音切除,不仅可以为语音识别排除干扰,同时能有效降低离线引擎对处理器的占用率;(4)为保证功能的实用性和语音识别的准度,需要在语音采集过程中增加异常处理操作。首先在离线引擎中需要开启后端静音检测功能,若在规定时间内,未收到有效语音数据,则自动停止本次语音识别;其次,需要在离线引擎中开启识别门限控制,如果识别结果未能达到所设定的门限,则本次语音识别失败;(5)通过语音识别接口,向引擎系统获取语音识别结果时,需要反复调用以取得引...