向告警装置输出告警指令。告警装置在接收到告警指令后执行告警操作,从而可以提醒救生人员。因此,本实用新型实施例中的方案能够及时准确地检测到溺水事件的发生,并及时地通知救生员进行救援。为使本实用新型的上述目的、特征和优点能够更为明显易懂,下面结合对本实用新型的具体实施例做详细的说明。本实用新型实施例提供了一种溺水事件检测系统。在本实用新型实施例中,溺水事件检测系统可以包括n个摄像头11、控制器12以及告警装置13。在具体实施中,n个摄像头11可以均设置在游泳池壁上。n个摄像头11在工作时,可以实时采集到游泳池内的图像。n个摄像头11与控制器12可以通信连接,从而可以将实时采集到的图像传输至控制器12。n个摄像头11可以通过有线连接的方式与控制器12通信连接,也可以通过无线连接的方式与控制器12通信连接。在本实用新型实施例中,n个摄像头11均通过无线连接的方式与控制器12连接。当n个摄像头11均通过无线连接的方式与控制器12通信连接时,在n个摄像头11中,可以均设置有相应的无线收发模块,以实现与控制器12的通信。例如,n个摄像头11与控制器12之间采用wifi进行通信,则在n个摄像头11中均设置有wifi收发模块。语音关键事件检测的成熟度如何?广东新一代语音关键事件检测内容
300]的向量d,其中对于索引id从0至19999,每个id对应一个不同的汉字。那么对于一句话(长度为s)中的每一个字符,都可以在d中找到对应的id,从而获取对应的向量,因此可以得到一个维度为[s,300]的向量。然后可以使用双向lstm神经网络得到句子的语义表示向量w1。在本申请的示例性实施例中,通过bert模型获得语句的向量化语义表示w1可以包括:将语句直接输入所述bert模型,将所述bert模型的输出作为语句的向量化语义表示w1。在本申请的示例性实施例中,使用bert模型时,可以将句子直接输入至bert模型,bert模型的输出即可以作为句子的向量化语义表示w1。在本申请的示例性实施例中,所述向量化语义表示w1的维度可以为[s,d1];其中,当通过双向lstm网络获得语句的向量化语义表示w1时,d1为2*lstm隐层节点数;当通过bert模型获得语句的向量化语义表示w1时,d1=768。在本申请的示例性实施例中,设以上两种方法得到的语义表示为w1,则,1的维度为[s,d1],其中s为句子长度;如果使用双向lstm网络获得语句的向量化语义表示w1,则d1为2*lstm隐层节点数,如果使用bert模型获得语句的向量化语义表示w1,则d1=768。s102、对所述向量化语义表示w1进行span划分,得到多个语义片段。广东新一代语音关键事件检测内容语音关键事件检测该如何使用?
并判断当前时刻所采集到的当前帧图像是否包括目标对象,由于目标对象为:能够表征用户进入目标防护舱的用户身体部位,则可以基于当前帧图像判断当前时刻是否有用户进入目标防护舱。则当判断结果为是时,便可以基于当前帧图像,确定待分析图像,进而将该待分析图像输入到预设的检测模型中,得到当前时刻,关于目标防护舱的事件检测结果。这样,由于检测模型是基于各个样本图像和各个样本图像的事件检测结果所训练得到的模型,因此,检测模型充分学习了样本图像和事件检测结果之间的对应关系。基于此,在本发明实施例中,利用采集到的真实图像来确定待分析图像,利用训练好的检测模型对待分析图像进行检测,便可以提高关于目标防护舱的事件检测结果的准确率。而上述事件检测结果中可以包括目标防护舱内所发生的事件类型,从而可以提高对防护舱内用户出现异常事件的检测准确率。需要说明的是,由于电子设备可以实时对目标防护舱内部发生的异常事件进行检测,则在上述本发明实施例提供的一种事件检测方法中,电子设备对实时获取的每一关于目标防护舱的图像后,判断该图像是否包括目标对象,并在判断结果为是时,执行后续步骤s303-s304。然而,可以理解的,在某些时刻。
缺点在于:首先处理繁琐,其次这些工具在处理的过程中本身具有一定的误差,因此在后续建模分析的过程中会存在误差累积的问题。3、基于序列标注的一系列模型很难解决事件主体存在交叉的情况,比如“北京的法院”为一个事件主体(机构),但是“北京”本身也是一种主体/实体(地名)。技术实现要素:本申请提供了一种事件检测方法和装置,能够获取更加有用的信息,具有较强的实际应用价值;在数据处理和建模的过程中操作简单,避免了因使用自然语言处理工具而导致的误差累积的问题;通过划分span的方式,完美解决了序列标注存在的问题,效率更高,适用性更强。本申请提供了一种事件检测方法,所述方法可以包括:获得语句的向量化语义表示w1;对所述向量化语义表示w1进行span划分,得到多个语义片段;对多个语义片段进行平均池化,得到每个span的表示w2;使用自注意力机制对获得的每个span的表示w2进行计算,得到每个span的新的语义表示w3;对所述新的语义表示w3进行span分类,确定每个span是否为一个事件的触发词或事件主体。在本申请的示例性实施例中,所述获得语句的向量化语义表示w1可以包括:通过双向lstm网络模型或bert模型获得语句的向量化语义表示w1。语音关键事件检测的优缺点?
检测模型为:基于各个样本图像和每个样本图像的事件检测结果所训练得到的模型。在该检测模型的训练过程中,可以将各个样本图像作为待训练模型的输入,将各个样本图像的事件检测结果作为待训练模型的输出。这样,在训练过程中,待训练模型可以学习各个样本图像中的图像特征,输出各个样本图像的事件检测结果,逐步建立样本图像的图像特征和事件检测结果的对应关系。这样,经过大量样本图像的学习,便可以得到上述检测模型。而该训练得到的检测模型也就可以用于对基于当前帧图像确定的待分析图像进行检测,输出的事件检测结果,即为关于目标防护舱的事件检测结果。显然,在训练上述检测模型时,所使用的样本图像为关于防护舱的图像。需要强调的是,不同类型和数量的待分析图像,所利用的检测模型也是不同的。为了行为清楚,后续将会对待分析图像与检测模型之间的对应关系进行举例说明。需要说明的是,上述检测模型可以在电子设备中训练得到的,也可以在与电子设备通信连接的其他电子设备中训练得到的,这样,电子设备便可以从该其他电子设备中获得上述检测模型,这都是合理的。此外,在本发明实施例中,电子设备可以检测目标防护舱内是否发生异常事件,则在这种情况下。语音关键事件检测主要是用在哪里的?山东无限语音关键事件检测
语音关键事件检测是什么?广东新一代语音关键事件检测内容
本发明涉及语音关键事件检测技术,特别是涉及一种事件语音关键事件检测。背景技术:当前,很多银行通过设置语音关键事件检测防护舱来为用户提供更便捷的金融服务。所谓防护舱,是一种离行式或在行式的智能化金融服务设施,其具有完善的结构设计,可以实现智能化控制和远程监控,保障内部atm(automatictellermachine,自动柜员机)及其它金融服务设备全天候安全、以及可靠地运行。其中,离行式是指设置在银行营业网点之外的地方,例如,住宅小区、校园、地铁站等公共场所;在行式是指设置在银行营业网点中。可以理解的,当用户进入语音关键事件检测防护舱进行金融活动时,有些时候会出现倒地、剧烈运动、破坏设备等异常事件,例如,老人突然身体不适晕倒、有人抢夺用户的银行卡、有人恶意破坏设备等情况。为了保障用户的人身和财产安全,需要对用户在防护舱中出现的异常事件进行检测,以便于可以及时救治或报警。相关方案中,检测用户在语音关键事件检测防护舱内出现倒地事件的方案是:在防护舱的两侧面板上距离地面1米。这样,用户在进入到防护舱时,便进入到红外线发射器的感测范围内,进而,由于用户身体的遮挡。广东新一代语音关键事件检测内容
深圳鱼亮科技有限公司是一家集研发、生产、咨询、规划、销售、服务于一体的服务型企业。公司成立于2017-11-03,多年来在智能家居,语音识别算法,机器人交互系统,降噪行业形成了成熟、可靠的研发、生产体系。主要经营智能家居,语音识别算法,机器人交互系统,降噪等产品服务,现在公司拥有一支经验丰富的研发设计团队,对于产品研发和生产要求极为严格,完全按照行业标准研发和生产。我们以客户的需求为基础,在产品设计和研发上面苦下功夫,一份份的不懈努力和付出,打造了Bothlent产品。我们从用户角度,对每一款产品进行多方面分析,对每一款产品都精心设计、精心制作和严格检验。智能家居,语音识别算法,机器人交互系统,降噪产品满足客户多方面的使用要求,让客户买的放心,用的称心,产品定位以经济实用为重心,公司真诚期待与您合作,相信有了您的支持我们会以昂扬的姿态不断前进、进步。