机器必然要超越人类的五官,能够看到人类看不到的世界,听到人类听不到的世界。语音识别的产业历程语音识别这半个多世纪的产业历程中,其中的共有三个关键节点,两个和技术有关,一个和应用有关。关键节点是1988年的一篇博士论文,开发了基于隐马尔科夫模型(HMM)的语音识别系统——Sphinx,当时实现这一系统的正是现在的投资人李开复。从1986年到2010年,虽然混合高斯模型效果得到持续改善,而被应用到语音识别中,并且确实提升了语音识别的效果,但实际上语音识别已经遭遇了技术天花板,识别的准确率很难超过90%。很多人可能还记得,在1998年前后IBM、微软都曾经推出和语音识别相关的软件,但终并未取得成功。第二个关键节点是2009年深度学习被系统应用到语音识别领域中。这导致识别的精度再次大幅提升,终突破90%,并且在标准环境下逼近98%。有意思的是,尽管技术取得了突破,也涌现出了一些与此相关的产品,比如Siri、GoogleAssistant等,但与其引起的关注度相比,这些产品实际取得的成绩则要逊色得多。Siri刚一面世的时候,时任GoogleCEO的施密特就高呼,这会对Google的搜索业务产生根本性威胁,但事实上直到AmazonEcho的面世,这种根本性威胁才真的有了具体的载体。技术的发展,现在口音、方言、噪声等场景下的语音识别也达到了可用状态。贵州语音识别公司
比如兼容性方面新兴公司做的会更加彻底,这种兼容性对于一套产品同时覆盖国内国外市场是相当有利的。类比过去的Android,语音交互的平台提供商们其实面临更大的挑战,发展过程可能会更加的曲折。过去经常被提到的操作系统的概念在智能语音交互背景下事实上正被赋予新的内涵,它日益被分成两个不同但必须紧密结合的部分。过去的Linux以及各种变种承担的是功能型操作系统的角色,而以Alexa为的新型系统则承担的则是智能型系统的角色。前者完成完整的硬件和资源的抽象和管理,后者则让这些硬件以及资源得到具体的应用,两者相结合才能输出终用户可感知的体验。功能型操作系统和智能型操作系统注定是一种一对多的关系,不同的AIoT硬件产品在传感器(深度摄像头、雷达等)、显示器上(有屏、无屏、小屏、大屏等)具有巨大差异,这会导致功能型系统的持续分化(可以和Linux的分化相对应)。这反过来也就意味着一套智能型系统,必须同时解决与功能型系统的适配以及对不同后端内容以及场景进行支撑的双重责任。这两边在操作上,属性具有巨大差异。解决前者需要参与到传统的产品生产制造链条中去,而解决后者则更像应用商店的开发者。这里面蕴含着巨大的挑战和机遇。
贵州语音识别公司识别说话人简化为已经对特定人语音训练的系统中翻译语音的任务,作为安全过程的一部分来验证说话人的身份。
亚马逊的Echo音箱刚开始推出的两三年,国内的智能音箱市场还不温不火,不为消费者所接受,因此销量非常有限。但自2017年以来,智能家居逐渐普及,音箱市场开始火热,为抢占语音入口,阿里巴巴、百度、小米、华为等大公司纷纷推出了各自的智能音箱。据Canalys报告,2019年第1季度中国市场智能音箱出货量全球占比51%,超过美国,成为全球*大的智能音箱市场。据奥维云网(AVC)数据显示,2019年上半年中国智能音箱市场销量为1556万台,同比增长233%。随着语音市场的扩大,国内涌现出一批具有强大竞争力的语音公司和研究团队,包括云知声、思必驰、出门问问、声智科技、北科瑞声、天聪智能等。他们推出的语音产品和解决方案主要针对特定场景,如车载导航、智能家居、医院的病历输入、智能客服、会议系统、证券柜台业务等,因为采用深度定制,识别效果和产品体验更佳。在市场上获得了不错的反响。针对智能硬件的离线识别,云知声和思必驰等公司还研发出专门的语音芯片,进一步降低功耗,提高产品的性价比。在国内语音应用突飞猛进的同时,各大公司和研究团队纷纷在国际学术会议和期刊上发表研究成果。2015年,张仕良等人提出了前馈型序列记忆网络。
共振峰的位置、带宽和幅度决定元音音色,改变声道形状可改变共振峰,改变音色。语音可分为浊音和清音,其中浊音是由声带振动并激励声道而得到的语音,清音是由气流高速冲过某处收缩的声道所产生的语音。语音的产生过程可进一步抽象成如图1-2所示的激励模型,包含激励源和声道部分。在激励源部分,冲击序列发生器以基音周期产生周期性信号,经过声带振动,相当于经过声门波模型,肺部气流大小相当于振幅;随机噪声发生器产生非周期信号。声道模型模拟口腔、鼻腔等声道qi官,后产生语音信号。我们要发浊音时,声带振动形成准周期的冲击序列。发清音时,声带松弛,相当于发出一个随机噪声。图1-2产生语音的激励模型,人耳是声音的感知qi官,分为外耳、中耳和内耳三部分。外耳的作用包括声源的定位和声音的放大。外耳包含耳翼和外耳道,耳翼的作用是保护耳孔,并具有定向作用。外耳道同其他管道一样也有共振频率,大约是3400Hz。鼓膜位于外耳道内端,声音的振动通过鼓膜传到内耳。中耳由三块听小骨组成,作用包括放大声压和保护内耳。中耳通过咽鼓管与鼻腔相通,其作用是调节中耳压力。内耳的耳蜗实现声振动到神经冲动的转换,并传递到大脑。声学模型和语言模型都是当今基于统计的语音识别算法的重要组成部分。
LSTM通过输入门、输出门和遗忘门可以更好的控制信息的流动和传递,具有长短时记忆能力。虽然LSTM的计算复杂度会比DNN增加,但其整体性能比DNN有相对20%左右稳定提升。BLSTM是在LSTM基础上做的进一步改进,不仅考虑语音信号的历史信息对当前帧的影响,还要考虑未来信息对当前帧的影响,因此其网络中沿时间轴存在正向和反向两个信息传递过程,这样该模型可以更充分考虑上下文对于当前语音帧的影响,能够极大提高语音状态分类的准确率。BLSTM考虑未来信息的代价是需要进行句子级更新,模型训练的收敛速度比较慢,同时也会带来解码的延迟,对于这些问题,业届都进行了工程优化与改进,即使现在仍然有很多大公司使用的都是该模型结构。图像识别中主流的模型就是CNN,而语音信号的时频图也可以看作是一幅图像,因此CNN也被引入到语音识别中。要想提高语音识别率,就需要克服语音信号所面临的多样性,包括说话人自身、说话人所处的环境、采集设备等,这些多样性都可以等价为各种滤波器与语音信号的卷积。而CNN相当于设计了一系列具有局部关注特性的滤波器,并通过训练学习得到滤波器的参数,从而从多样性的语音信号中抽取出不变的部分。
目前的主流语音识别系统多采用隐马尔可夫模型HMM进行声学模型建模。贵州语音识别公司
一个完整的语音识别系统通常包括信息处理和特征提取、声学模型、语言模型和解码搜索四个模块。贵州语音识别公司
并能产生兴趣投身于这个行业。语音识别的技术历程现代语音识别可以追溯到1952年,Davis等人研制了能识别10个英文数字发音的实验系统,从此正式开启了语音识别的进程。语音识别发展已经有70多年,但从技术方向上可以大体分为三个阶段。从1993年到2017年在Switchboard上语音识别率的进展情况,从图中也可以看出1993年到2009年,语音识别一直处于GMM-HMM时代,语音识别率提升缓慢,尤其是2000年到2009年语音识别率基本处于停滞状态;2009年随着深度学习技术,特别是DNN的兴起,语音识别框架变为DNN-HMM,语音识别进入了DNN时代,语音识别准率得到了提升;2015年以后,由于“端到端”技术兴起,语音识别进入了百花齐放时代,语音界都在训练更深、更复杂的网络,同时利用端到端技术进一步大幅提升了语音识别的性能,直到2017年微软在Swichboard上达到词错误率,从而让语音识别的准确性超越了人类,当然这是在一定限定条件下的实验结果,还不具有普遍性。GMM-HMM时代70年代,语音识别主要集中在小词汇量、孤立词识别方面,使用的方法也主要是简单的模板匹配方法,即首先提取语音信号的特征构建参数模板,然后将测试语音与参考模板参数进行一一比较和匹配。贵州语音识别公司
深圳鱼亮科技有限公司成立于2017-11-03,同时启动了以Bothlent为主的智能家居,语音识别算法,机器人交互系统,降噪产业布局。深圳鱼亮科技经营业绩遍布国内诸多地区地区,业务布局涵盖智能家居,语音识别算法,机器人交互系统,降噪等板块。我们强化内部资源整合与业务协同,致力于智能家居,语音识别算法,机器人交互系统,降噪等实现一体化,建立了成熟的智能家居,语音识别算法,机器人交互系统,降噪运营及风险管理体系,累积了丰富的通信产品行业管理经验,拥有一大批专业人才。公司坐落于龙华街道清华社区建设东路青年创业园B栋3层12号,业务覆盖于全国多个省市和地区。持续多年业务创收,进一步为当地经济、社会协调发展做出了贡献。