颠覆传统服务模式,智能语音服务为IVR注入新生机:IVR,(InteractiveVoiceResponse互动式语音应答)在呼叫中心的发展历程中,由于其可以有效解决一些高频简单的业务,而广泛应用在目前的主流呼叫中心中,如果你拨打10086、10010电信行业客服热线,或者拨打400等热线服务时,你可能会听到这样一些熟悉的声音:“普通话服务请按1,ForServiceInEnglish,Press2”,“查询服务请按1,业务办理请按2”,如果你对着自己的电话继续按键,系统会引导你一直按下去,直到完成业务查询或业务办理。IVR通过将用户的需求梳理进行分类,形成一个树状菜单,解决了固定的信息查询和办理类问题,通过纵深菜单层级,扩展新的业务。随着业务的不断发展,IVR中需要加载的业务越来越多,树状菜单的层级也越来越深,有的业务已经藏到了7层甚至更深的节点,很少有客户能耐心按照菜单提示一步一步的按下去,客户希望听到的就是“人工服务,请按0”,进而导致人工话务居高不下,随着人工成本的不断提升,企业面临越来越大的压力。为提升IVR的分流能力,这几年呼叫中心想出了各种办法进行尝试解决,例如个性化IVR,用户可以自己定义专属自己的菜单,从而简化个人的按键流程,但是很少有用户使用。
语音服务通知当客户的系统发生变更、故障、安全、变化时,通知相应人员对问题进行响应处理。安徽未来语音服务供应
已经从一个创新型的技术变成了一个完整的解决方案,09年已经在工商银行电话银行中得到了应用,目前已经有众多行业企业开始应用该方案。用户来电进入语音导航系统,直接表达业务需求,如“我的手机里还有多少钱”,系统便可直接定位至话费查询节点,并通过语音合成技术动态播报用户话费信息。该应用主要依赖科大讯飞公司在人机交互领域持续积累的几个技术。1.语音服务识别技术–“人的耳朵”智能语音交互首先需要IVR系统能够听懂人说话,这就是需要语音识别技术,语音识别技术经历了几个发展阶段:命令词识别,需要客户准确说出业务名称才能识别;关键词识别,客户需要说出业务关键词;连续语音识别:识别可以自由表述需求,无需关注业务名称。语音导航应用的为连续语音识别技术,并基于国际先进的DBN技术。语音识别除了和技术相关,数据起的作用也很大,比如北京人和广东人表述“话费查询”,口音和表达方法都不完全相同,如果语音识别听过的数据越多,识别率就越高,科大讯飞产品已经对大多业务类型、口音特点和电话信道等进行了适配,识别率能够达到90%以上。2.语义理解技术—“人的大脑”听懂语音还不够,还需要理解其意思,例如我们听国外人唱歌,声音能听得出来。广西未来语音服务供应高清语音服务(WB)则可支持宽带音频信号,音频带宽的频率达到7kHz。
统一消息系统语音服务:用户无需使用电脑,通过电话或手机等通信设备便能够在没有电脑联网的情况下(如:旅途、娱乐)随时查询并处理统一消息邮箱中的电子邮件,使沟通更加随意。功能:听取语音邮件:通过手机拨打特别服务电话的方式听取邮件内容,方便用户及时获取信息,使访问邮箱更加容易,不再受到时间、地点以及设备的限制。回复语音邮件:通过手机用语音邮件的方式给发件人回复邮件,不仅使邮件的处理方式更加多样化,同时让邮件的处理变得更加及时。语音留言:用户可以将统一消息的电子邮箱作为语音信箱使用,收录各种语音留言,起到电话录音机的作用,避免遗漏任何信息。语音控制:用户通过手机拨打特别服务电话的方式访问统一消息邮箱,可以采用语音命令的形式来进行邮箱的访问,高达97%的语音识别准确率,免去了烦琐的按键操作。传真接收邮件:用户通过手机拨打特别服务电话的方式访问邮箱邮件后,用户只需通过手机输入传真机的号码,选定的邮件便会通过系统提供的传真功能,将邮件的正文和附件内容通过传真机打印出来。统一消息平台将电话网和Internet结合在一起,使电话用户可以通过电话或者传真方式获取Internet上的信息,也使电子邮件不再局限于Internet。
异步对话听录通过异步听录,将对话音频进行流式传输,但是不需要实时返回的听录。相反,发送音频后,使用Conversation的conversationId来查询异步听录的状态。异步听录准备就绪后,将获得RemoteConversationTranscriptionResult。通过实时增强异步,你可以实时地获取听录,也可以通过使用conversationId(类似于异步场景)查询来获得听录。完成异步听录需要执行两个步骤。第一步是上传音频:选择异步或实时增强异步。第二步是获取听录结果。上传音频异步听录的第一步是使用语音服务SDK(版本)将音频发送到对话听录服务。以下示例代码演示如何为异步模式创建ConversationTranscriber。若要将音频流式传输到转录器,可以添加通过语音SDK实时转录对话中派生的音频流代码。具有conversationId之后,在客户端应用程序中创建远程对话听录客户端RemoteConversationTranscriptionClient,以查询异步听录的状态。创建RemoteConversationTranscriptionOperation的对象,以获取长时间运行的操作对象。你可以检查操作的状态,也可以等待操作完成。 其中为了更有效地提取特征往往还需要对所采集到的声音信号进行滤波、分帧等预处理工作。
主要原因是定制菜单花费的时间太多,客户不太愿意使用。再如近几年提出的IVR优化,通过去除低频访问的业务,只保留高频业务,并安排呼叫频度决定业务所处的层架,这种方式会导致许多业务通过IVR无法办理,损伤了客户的体验。在移动互联网时代,“用户体验”重要性不言而喻,而竞争日益加剧的,“降低成本”是提升企业竞争力的关键。如何实现“鱼和熊掌兼得”?关键在于提升IVR的服务能力,通过菜单调整的方法终究是“治标不治本”,我们需要对IVR进行颠覆性的改变。智能语音服务技术的发展为IVR的发展注入了新的生机,以苹果“siri””为的手机智能语音服务助理的出现,标志智能语音技术发展达到了实用水平,在IVR中应用智能语音技术,用户无需按键,说出需求即可办理业务,非常符合人的使用习惯,同时完全摆脱了0-9按键个数的限制,大幅提升信息输入效率。一.智能语音服务在IVR中的业务模式我们对国内从事智能语音技术研发的领导企业“科大讯飞”进行了调研,智能语音在IVR中的应用是公司的重要产品方向之一,公司在06年开始尝试在IVR中的应用,提出“语音导航”的方案,为呼叫中心提供语音识别驱动的新型自动语音交互应用。通过语音服务控制请求中的目标设备区域配置信息从该设备列表中确定对应区域的受控设备信息。海南语音服务供应
语言模型则根据语言学相关的理论,计算该声音信号对应可能词组序列的概率。安徽未来语音服务供应
传统语音合成系统对于duration和声学特征是分开建模的,合成时需要先预测duration信息,再根据预测得到的duration预测声学特征,而End2End系统利用了seq2seq模型,对所有声学特征进行统一建模及预测,这样可以更好的对时长和音调高低等韵律变化进行建模。在传统语音合成领域,一直有研究人员在尝试更好的对韵律进行建模,例如但受限于系统框架和模型建模能力,在传统语音合成系统中始终没能获得令人满意的结果。而在End2End系统中,基于更强大的seq2seq模型,充分利用了语音韵律的domainknowledge,终得以产生高表现力的合成语音。在KAN-TTS中,考虑到深度学习技术的快速进展以及End2End模型的合成效果,我们也采用了seq2seq模型作为声学模型,同时结合海量数据,进一步提高了整体模型的效果和稳定性。 安徽未来语音服务供应