全球高精度模拟和数字信号处理元件厂商CirrusLogic(纳斯达克代码:CRUS)宣布推出面向Alexa语音服务(AVS)的开发套件,该套件适用于智能扬声器和智能家居应用,包括语音控制设备、免提便携式扬声器和网络扬声器等。面向AmazonAVS的语音采集开发套件采用CirrusLogic的IC和软件设计,帮助制造商将Alexa新产品迅速推向市场,即使在嘈杂的环境和音乐播放过程中,这些新品也可实现高精度唤醒词触发和命令解释功能。面向AmazonAVS的低功耗语音采集开发套件包括采用了CirrusLogicCS47L24智能编解码器和CS7250B数字MEMS麦克风的参考板,以及进行语音控制、噪声抑zhi和回声消除的SoundClear®算法。完整的语音采集参考设计进一步增强了“Alexa”唤醒词检测和音频捕获功能在真实条件下的实现,即使是在嘈杂环境下中等距离范围内,用户也能够可靠地中断高音音乐或者Alexa回应播放。智能编解码器使用一个片上高性能数模转换器(DAC)以及一个两瓦单声道扬声器驱动器,实现高保真音频播放。Alexa语音服务总监PriyaAbani表示:“我们很高兴能够与CirrusLogic一起帮助OEM厂商在更多的智能扬声器和其他各种音频设备中应用Alexa。作为语音识别的前提与基础,语音信号的预处理过程至关重要。福建电子类语音服务有什么
房间102中的灯)。本发明一实施例的物联网设备语音控制方法的信号流程。在步骤301中,说话人向物联网主控设备10发送语音消息。接着,在步骤302中,物联网主控设备10确定语音控制请求。接着,在步骤303中,物联网主控设备10发送语音控制请求至语音服务端30。接着,在步骤304中,语音服务端确定语音消息所对应的语音控制意图信息。关于步骤301~304的操作,可以参照上面其他实施例中所描述的操作,在此便不赘述。接着,在步骤305中,语音服务端30发送目标设备用户信息至物联网运营端40。这里,在物联网运营端存储有多个设备列表,例如可以是由各个用户分别针对其所管理的不同区域内的各个物联网受控设备进行注册的。并且,物联网运营端40可以查询相应的目标设备列表。接着,在步骤306中,语音服务端30从物联网运营端40接收相应于目标设备用户信息的目标设备列表。例如,物联网运营端40可以通过遍历查询来对目标设备列表进行调用。接着,在步骤307中,语音服务端30基于目标设备列表和目标设备区域配置信息来确定相应的目标受控设备信息。接着,在步骤308中,语音服务端30确定用于指示语音控制意图信息和目标受控设备信息的控制请求指令。福建语音服务声学模型中再根据声学特性计算每一个特征向量在声学特征上的得分。
由于DNN-HMM训练成本不高而且相对较高的识别概率,所以即使是到现在在语音识别领域仍然是较为常用的声学模型。除了DNN之外,经常用于计算机视觉的CNN也可以拿来构建语音声学模型。当然,CNN也是经常会与其他模型结合使用。CNN用于声学模型方面主要包括TDNN、CNN-DNN框架、DFCNN、CNN-LSTM-DNN(CLDNN)框架、CNN-DNN-LSTM(CDL)框架、逐层语境扩展和注意CNN框架(LACE)等。这么多基于CNN的混合模型框架都在声学模型上取得了很多成果,这里小编挑两个进行简单阐述。TDNN是早基于CNN的语音识别方法,TDNN会沿频率轴和时间轴同时进行卷积,因此能够利用可变长度的语境信息。TDNN用于语音识别分为两种情况,第一种情况下:只有TDNN,很难用于大词汇量连续性语音识别(LVCSR),原因在于可变长度的表述(utterance)与可变长度的语境信息是两回事,在LVCSR中需要处理可变长度表述问题,而TDNN只能处理可变长度语境信息;第二种情况:TDNN-HMM混合模型,由于HMM能够处理可变长度表述问题,因而该模型能够有效地处理LVCSR问题。DFCNN的全称叫作全序列卷积神经网络(DeepFullyConvolutionalNeuralNetwork)。是由国内语音识别领域科大讯飞于2016年提出的一种语音识别框架。
传统语音合成系统利用了文本相关数据积累了大量的domainknowledge,因此可以获得较稳定的合成结果;而没有利用该domainknowledge的End2End语音合成系统,在合成稳定性方面就不如传统语音合成系统。近年来,有一些研究工作就是基于标注发音的文本数据针对多音字发音消歧方面进行优化,也有些研究工作针对传统语音合成系统中的停顿预测进行优化。传统系统可以轻易的利用这样的研究成果,而End2End系统没有利用到这样的工作。在KAN-TTS中,我们利用了海量文本相关数据构建了高稳定性的domainknowledge分析模块。例如,在多音字消歧模块中,我们利用了包含多音字的上百万文本/发音数据训练得到多音字消歧模型,从而获得更准确的发音。如果像End2end系统那样完全基于语音数据进行训练,光是包含多音字的数据就需要上千小时,这对于常规数据在几小时到几十小时的语音合成领域而言,是不可接受的。 语音服务控制装置及其方法。
用户设备确定单元620确定所述目标设备用户信息所对应的目标设备列表,目标设备列表包括针对目标设备用户信息的在多个设备区域配置信息下的多个受控设备信息。目标受控设备确定单元630为基于所述目标设备区域配置信息从所述目标设备列表中确定目标受控设备信息。操控单元640为基于所述语音消息,对所述目标受控设备信息所对应的目标物联网受控设备进行操控。上述本发明实施例的语音服务端和物联网主控设备可用于执行本发明中相应的方法实施例,并相应的达到上述本发明方法实施例所达到的技术效果,这里不再赘述。本发明实施例中可以通过硬件处理器(hardwareprocessor)来实现相关功能模块。另一方面,本发明实施例提供一种存储介质,其上存储有计算机程序,该程序被处理器执行如上的物联网设备语音控制方法的步骤。上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。本申请实施例的客户端以多种形式存在,包括但不限于:(1)移动通信设备:这类设备的特点是具备移动通信功能,并且以提供话音、数据通信为主要目标。这类终端包括:智能手机。语音技术可以用来理解客户,而不考虑语法、口音或背景噪音。广东语音服务哪里买
点击呼叫是指通过调用语音服务接口,通过语音服务分配的号码分别向主叫、被叫发起呼叫,建立起正常通话。福建电子类语音服务有什么
然后选择“租户模型设置”。选择“部署”。部署模型后,状态会更改为“已部署”。配合使用租户模型和语音SDK部署模型后,配合使用模型和语音SDK。在本部分中,我们使用示例代码通过AzureActiveDirectory(AzureAD)身份验证来调用语音服务。我们来看一下用于调用C#中的语音SDK的代码。在本例中,我们使用租户模型执行语音识别。本指南默认平台已设置。接下来,需要在命令行下重新生成并运行项目。在运行该命令之前,请通过以下操作更新一些参数:将<Username>和<Password>替换为有效租户用户的值。将<Subscription-Key>替换为语音资源的订阅密钥。可在Azure门户中的语音资源的“概述”部分获取此值。将<Endpoint-Uri>替换为以下终结点。请确保将{yourregion}替换为创建语音资源的区域。支持以下区域:westus、westus2和eastus。可在Azure门户中的语音资源的“概览”部分获取区域信息。福建电子类语音服务有什么