您好,欢迎访问

商机详情 -

四川数字语音服务

来源: 发布时间:2023年12月17日

    电源模块的输出端与处理器的输入端电连接,且处理器与信息传递模块之间双向电连接,后台终端上电连接有信息处理模块,且后台终端与信息处理模块之间双向电连接;输入/输出模块包括视频单元、按键单元和语音单元,视频单元、按键单元和语音单元之间**设置,且视频单元的输出端与识别模块的输入端电连接;视频单元连接有显示屏,语音单元包括扬声器与麦克风,且扬声器与麦克风之间并联设置;信心传递模块包括信息发送单元和信息接收单元,信息发送单元与信息接收单元之间双向电连接;信息传递模块与服务器之间无线连接,服务器与后台终端之间无线连接,且后台终端与信息传递模块之间通过服务器无线连接;后台终端包括人工服务和自助服务,人工服务与自助服务均与后台终端之间双向电连接。需要说明的是,本发明为一种智能语音服务交互系统,在使用时,使用者通过按键拨打拨打电信、银行等的客户电话,输入/输出模块中的按键单元将电话信息输入到处理器中,处理器根据输入的信息发出相应的指令,信息传递模块接收指令后作出相应动作,信息传递模块中的信息发送单元发送无线信息,通过服务器的中转之后,无线信息输送到后台终端中。通过使用组网架构上的新空口承载语音服务,运营商将能够在5G语音设备上提供语音服务。四川数字语音服务

    用户设备确定单元620确定所述目标设备用户信息所对应的目标设备列表,目标设备列表包括针对目标设备用户信息的在多个设备区域配置信息下的多个受控设备信息。目标受控设备确定单元630为基于所述目标设备区域配置信息从所述目标设备列表中确定目标受控设备信息。操控单元640为基于所述语音消息,对所述目标受控设备信息所对应的目标物联网受控设备进行操控。上述本发明实施例的语音服务端和物联网主控设备可用于执行本发明中相应的方法实施例,并相应的达到上述本发明方法实施例所达到的技术效果,这里不再赘述。本发明实施例中可以通过硬件处理器(hardwareprocessor)来实现相关功能模块。另一方面,本发明实施例提供一种存储介质,其上存储有计算机程序,该程序被处理器执行如上的物联网设备语音控制方法的步骤。上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。本申请实施例的客户端以多种形式存在,包括但不限于:(1)移动通信设备:这类设备的特点是具备移动通信功能,并且以提供话音、数据通信为主要目标。这类终端包括:智能手机。四川数字语音服务语音服务端一方面可以表示用来提供语音识别服务的服务端。

转发服务器跟原有系统完全解耦,原系统改造也很小,可以实现高可用。缺点是转发服务器起码有两台机器,也会增加接收方数据去重的复杂度。现在我们梳理一下,要实现一个支持百万级的语音聊天房间,整体的架构如下所示:1.用户创建房间。通过目录服务器创建,实际上是在数据库中增加一条set_id和room_id的映射记录。2.用户请求进入房间。通过目录服务器查询应该连到哪台语音服务器,具体的逻辑由负载均衡服务器实现。简单描述为:查询到room_id所在的set的所有语音服务器,根据负载情况和就近接入原则,选择几台语音服务器的ip和端口返回。3.用户进入房间。客户端连接语音服务器,语音服务器将进房请求透传给房间服务器,房间服务器记录房间架构信息,并定期同步给set内所有的语音服务器。4.对于小房间,通过set内转发语音实现。对于跨set的大房间,由多个房间服务器协同工作实现。房间服务器之间不需要互相通信,它们只要在set内按规则挑选一台语音服务器作为broker。Broker收到语音数据时,除了常规的set内转发外,还将数据发给转发服务器。转发服务器知道房间所在的set列表和每个set的broker,从而实现跨set转发。

    则新的基础模型的训练时间将会大幅增加,并且可能会轻易地从几个小时增加到几天及更长时间。如果语音服务订阅所在区域没有于训练的硬件,则更是如此。如果你面临以上段落中所述的问题,则可以通过减少数据集内的音频量或完全删除音频并留下文本,来快速缩短训练时间。如果语音服务订阅所在区域没有于训练的硬件,我们强烈建议你完全删除音频并留下文本。在带有于训练的硬件的区域中,语音服务将使用多20小时的音频进行训练。在其他区域中,多只会使用8小时的音频。上传数据:若要上传数据,请导航到自定义语音服务识别门户。创建项目后,导航到“语音服务数据集”选项卡,然后单击“上传数据”以启动向导并创建个数据集。在上传数据之前,系统会要求你为数据集选择语音服务数据类型。首先需要指定要将数据集用于“训练”还是“测试”。还有多种类型的数据可供上传并用于“训练”或“测试”。上传的每个数据集必须符合所选数据类型的要求。必须先将数据设置为正确格式再上传它。格式正确的数据可确保自定义语音识别服务对其进行准确处理。以下部分列出了要求。上传数据集后,可以使用几个选项:可以导航到“训练自定义模型”选项卡来训练自定义模型。

     语音合成标记语言可让开发人员指定如何使用文本转语音服务将输入文本转换为合成语音。

以安徽移动为例,语音服务导航系统于2013年3月上线,已面向全省客户开放,目前语音导航的日均呼叫量超过10万,降低整体人工话务量10%以上,减轻了人工成本。与此同时,语音服务导航系统的业务办理率相对于按键IVR系统明显提升,语音导航平均业务办理率15%以上,而传统IVR按键系统不到1%。在IVR中应用智能语音识别技术需要注意如下几点:1.深入分析业务需求,结合智能语音特点,确定智能语音应用范围智能语音通过技术创新,彻底消除了传统的按键菜单层级太多的瓶颈,从源头上解决按键式IVR面临的问题,但并不是所有业务都适合应用语音识别技术,例如卡号、手机号等大串数字输入,或者号码和英文字母混合的场景,输入错误一位则意味着输入失败,而“1”和“7”,“1”和“E”等发音非常相近,这种情况则不适合语音应用,使用按键输入更加合适。因此应用前需要和专业的智能语音厂商进行深入沟通,“扬长避短”的应用智能语音技术。2.持续优化是智能语音应用的关键,需要在推广、项目工期中做充分考虑。智能语音应用和移动互联网应用类似,通过用户的行为驱动系统进行更新,将不能识别的说法加入到语义模型中,调整智能语音系统的资源模型实现识别率的持续提升。语音服务的主要功能之一是能够识别并转录人类语音(通常称为语音转文本)。江西语音服务内容

GStreamer 会先解压缩音频,然后再将音频作为原始 PCM 通过网络发送到语音服务。四川数字语音服务

    循环神经网络、LSTM、编码-解码框架、注意力机制等基于深度学习的声学模型将此前各项基于传统声学模型的识别案例错误率降低了一个层次,所以基于深度学习的语音识别技术也正在逐渐成为语音识别领域的技术。语音识别发展到如今,无论是基于传统声学模型的语音识别系统还是基于深度学习的识别系统,语音识别的各个模块都是分开优化的。但是语音识别本质上是一个序列识别问题,如果模型中的所有组件都能够联合优化,很可能会获取更好的识别准确度,因而端到端的自动语音识别是未来语音识别的一个重要的发展方向。所以,本文主要内容的介绍顺序就是先给大家介绍声波信号处理和特征提取等预处理技术,然后介绍GMM和HMM等传统的声学模型,其中重点解释语音识别的技术原理,之后后对基于深度学习的声学模型进行一个技术概览,对当前深度学习在语音识别领域的主要技术进行简单了解,对未来语音识别的发展方向——端到端的语音识别系统进行了解。信号处理与特征提取因为声波是一种信号,具体我们可以将其称为音频信号。原始的音频信号通常由于人类发声或者语音采集设备所带来的静音片段、混叠、噪声、高次谐波失真等因素,一定程度上会对语音信号质量产生影响。

   四川数字语音服务

扩展资料

语音服务热门关键词

语音服务企业商机

语音服务行业新闻

推荐商机