主要原因是定制菜单花费的时间太多,客户不太愿意使用。再如近几年提出的IVR优化,通过去除低频访问的业务,只保留高频业务,并安排呼叫频度决定业务所处的层架,这种方式会导致许多业务通过IVR无法办理,损伤了客户的体验。在移动互联网时代,“用户体验”重要性不言而喻,而竞争日益加剧的,“降低成本”是提升企业竞争力的关键。如何实现“鱼和熊掌兼得”?关键在于提升IVR的服务能力,通过菜单调整的方法终究是“治标不治本”,我们需要对IVR进行颠覆性的改变。智能语音服务技术的发展为IVR的发展注入了新的生机,以苹果“siri””为的手机智能语音服务助理的出现,标志智能语音技术发展达到了实用水平,在IVR中应用智能语音技术,用户无需按键,说出需求即可办理业务,非常符合人的使用习惯,同时完全摆脱了0-9按键个数的限制,大幅提升信息输入效率。一.智能语音服务在IVR中的业务模式我们对国内从事智能语音技术研发的领导企业“科大讯飞”进行了调研,智能语音在IVR中的应用是公司的重要产品方向之一,公司在06年开始尝试在IVR中的应用,提出“语音导航”的方案,为呼叫中心提供语音识别驱动的新型自动语音交互应用。网络带宽要求您可以对比来考虑如何为电话语音服务构建网络环境。天津语音服务设计
则可以通过减少数据集内的音频量或完全删除音频并留下文本,来快速缩短训练时间。如果语音服务订阅所在区域没有于训练的硬件,我们强烈建议你完全删除音频并留下文本。美国英语(en-US)英语音频的人为标记的听录必须以纯文本形式提供,使用ASCII字符。避免使用拉丁语-1或Unicode标点字符。从文字处理应用程序中复制文本或从网页中擦除数据时,常常会无意中添加这些字符。如果存在这些字符,请务必将其更新为相应的ASCII替代字符。美国英语的文本规范化文本规范化是指将字词转换为在训练模型时使用的一致格式。某些规范化规则会自动应用到文本,但我们建议你在准备人为标记的听录数据时遵循以下准则:将缩写写成字词。将非标准数字字符串写成字词(例如会计术语)。应按照发音听录非字母字符或混合字母数字字符。不应编辑可以作为字词发音的缩写(例如,“radar”、“laser”、“RAM”或“NATO”)。将发音的缩写写成单独的字母,每个字母用单个空格分开。如果使用音频,请将数字听录为与音频匹配的字词(例如“101”可以读作“oneohone”或“onehundredandone”)。请避免将字符、单词或词组重复三次以上,例如“yeahyeahyeahyeah”。语音服务可能会删除具有此类重复的行。
新疆量子语音服务进行模板匹配的时候,是将输入语音信号的特征参数同模板库中的特征参数进行对比。
例如:“aaaa”、“yeahyeahyeahyeah”或“that'sitthat'sitthat'sitthat'sit”。语音服务可能会删除包含太多重复项的行。请勿使用特殊字符或编码在U+00A1以后的UTF-8字符。将会拒绝URI。用于训练的发音数据如果用户会遇到或使用没有标准发音的不常见字词,你可以提供自定义发音文件来改善识别能力。重要建议不要使用自定义发音文件来改变常用字的发音。应以单个文本文件的形式提供发音。口述形式是拼写的拼音顺序。它可以由字母、单词、音节或三者的组合构成。自定义发音适用于英语(en-US)和德语(de-DE)。用于测试的音频数据:音频数据适合用于测试Microsoft基线语音转文本模型或自定义模型的准确度。请记住,音频数据用于检查语音服务的准确度,反映特定模型的性能。若要量化模型的准确度,请使用音频和人为标记的听录数据。默认音频流格式为WAV(16KHz或8kHz,16位,单声道PCM)。除了WAV/PCM外,还可使用GStreamer支持下列压缩输入格式。MP3、OPUS/OGG、FLAC、wav容器中的ALAW、wav容器中的MULAW、任何(适用于媒体格式未知的情况)。提示上传训练和测试数据时,.zip文件大小不能超过2GB。如果需要更多数据来进行训练,请将其划分为多个.zip文件并分别上传。
由于DNN-HMM训练成本不高而且相对较高的识别概率,所以即使是到现在在语音识别领域仍然是较为常用的声学模型。除了DNN之外,经常用于计算机视觉的CNN也可以拿来构建语音声学模型。当然,CNN也是经常会与其他模型结合使用。CNN用于声学模型方面主要包括TDNN、CNN-DNN框架、DFCNN、CNN-LSTM-DNN(CLDNN)框架、CNN-DNN-LSTM(CDL)框架、逐层语境扩展和注意CNN框架(LACE)等。这么多基于CNN的混合模型框架都在声学模型上取得了很多成果,这里小编挑两个进行简单阐述。TDNN是早基于CNN的语音识别方法,TDNN会沿频率轴和时间轴同时进行卷积,因此能够利用可变长度的语境信息。TDNN用于语音识别分为两种情况,第一种情况下:只有TDNN,很难用于大词汇量连续性语音识别(LVCSR),原因在于可变长度的表述(utterance)与可变长度的语境信息是两回事,在LVCSR中需要处理可变长度表述问题,而TDNN只能处理可变长度语境信息;第二种情况:TDNN-HMM混合模型,由于HMM能够处理可变长度表述问题,因而该模型能够有效地处理LVCSR问题。DFCNN的全称叫作全序列卷积神经网络(DeepFullyConvolutionalNeuralNetwork)。是由国内语音识别领域科大讯飞于2016年提出的一种语音识别框架。
在这些区域之一中设置语音服务订阅将减少训练模型所需的时间。
阿里云语音服务为您提供多种功能产品,包含语音通知、语音验证码、语音互动、语音双呼、智能语音交互呼入、智能语音交互呼出及智能语音机器人,您可以根据使用场景或业务优势选择不同的语音产品。语音通知语音通知是指通过调用语音呼叫的API,从运营商网络向指定号码发起一通呼叫,呼叫被应答后,播放一段指定的音频,支持通过TTS(文本转语音)播放,也支持直接播放录音文件。场景:常用于订单提醒、风险告知、故障提醒、配送服务、退票提醒等场景。价值:作为短信通知的有效补充,提供多样化通知手段,并通过电话的强提醒模式,通知到用户,解决通知不及时的问题。示例场景如下所示。主叫方:尊敬的${mcUserName}您好,您的云通信账号余额不足,请尽快续费以免停机。语音验证码语音验证码是指通过调用语音呼叫的API,从运营商网络向指定号码发起一通呼叫,呼叫被应答后,播放一段含验证码内容的音频,通过TTS播放。场景:常用于获取验证码等安全验证场景。价值:短信验证收不到时,可以作为其强有力补充,同时用于代替短信验证码,可用于防刷dan。示例场景如下所示。主叫方:尊敬的${mcUserName}您好,您本次登录验证码为${Number}。VR定制语音服务已经开始推行了,那么这项技术中关键的技术是什么呢?辽宁光纤数据语音服务
其中为了更有效地提取特征往往还需要对所采集到的声音信号进行滤波、分帧等预处理工作。天津语音服务设计
进一步地,可以基于所获取的各个用户物联网受控设备信息集,确定与设备用户信息相对应的多个物联网受控设备信息。这里,在确定设备列表时,需要针对酒店a下的各个物联网主控设备分别进行操作,例如针对酒店a中各个房间内的主控音箱进行操作。并且,针对设备用户信息下的各个物联网主控设备可以进行如步骤420-步骤440的操作。在步骤420中,获取关于该物联网主控设备的区域配置请求,区域配置请求包括设备区域配置信息。示例性地,语音服务端接收到针对酒店a的其中一个主控音箱(例如,位于房间301的音箱)的区域配置请求,这个区域配置请求中包括设备区域配置信息“房间301”。在步骤430中,获取针对多个物联网受控设备信息中的至少一者的选择指令。示例性地,酒店管理人员可以对酒店a所对应的各个物联网受控设备信息针对“房间301”(即,区域配置信息)进行选择。在步骤440中,确定所选择的至少一个设备区域配置信息与区域配置请求中的设备区域配置信息是相对应的。示例性地,可以将酒店a下的各个物联网受控设备(例如,灯具、窗帘等)和主控设备针对设备区域配置信息进行配置。在步骤450中,基于各个物联网受控设备信息所对应的设备区域配置信息。天津语音服务设计