告警装置13在接收到告警指令后,可以输出与告警指令对应的告警信号。告警装置13通过输出告警信号,提醒游泳场馆内的救生员当前存在溺水事件的发生。在实际应用中,告警装置13可以为便携式的智能手环。当智能手环接收到告警指令后,可以输出振动信号。智能手环可以被佩戴在游泳馆救生员的手腕上。当智能手环振动时,救生员即可获知当前有游泳者发生溺水。告警装置13也可以为智能手机。当智能手机接收到告警指令后,可以同时输出振动信号以及语音信号。救生员可以随身携带该智能手机。当智能手机输出振动信号及语音信号时,救生员即可获知当前有游泳者发生溺水。可以理解的是,告警装置13还可以为其他类型的终端。例如,告警装置13可以为游泳场馆内的广播台。当告警装置13接收到告警指令后,可以输出相应的告警信号,告警信号可以是振动信号、语音信号以及光信号中的至少一种。在判定目标人物溺水之后,若要及时进行应急营救,救生员需要及时地获知游泳者的溺水位置。在具体实施中,控制器12在判定目标人物溺水之后,还可以获取一次检测到目标人物出现在游泳池中的目标位置信息,并将目标位置信息输出至预先关联的告警装置13。语音关键事件检测和摄像头有联系吗?安徽数字语音关键事件检测
控制器可以根据接收到的图像确定是否存在溺水现象发生,并在确定存在溺水现象发生时,向告警装置输出告警指令。告警装置在接收到告警指令后执行告警操作,从而可以提醒救生人员。因此,本实用新型实施例中的方案能够及时准确地检测到溺水事件的发生,并及时地通知救生员进行救援。说明是本实用新型实施例中的一种溺水事件检测系统的结构;本实用新型实施例中的一种摄像头安装位置;是本实用新型实施例中的另一种溺水事件检测系统的结构示意图。具体实施方式现有技术中,为有效解决溺水问题,通常在游泳场馆中安装有摄像头,摄像头通常安装在游泳池的上方,以实时采集游泳池内的图像。后台工作人员在监控室查看摄像头实时采集到的图像,并依次确认是否有游泳者出现溺水现象。然而,当游泳池内的游泳者较多时,后台工作人员获知每一个游泳者的当前状态的时间较长,难以及时发现发生溺水的游泳者。综上,现有的解决溺水问题的方案存在效率低下和准确度较低的技术问题。在本实用新型中,n个摄像头实时采集图像,控制器可以实时获取n个摄像头采集到的图像。控制器可以根据接收到的图像确定是否存在溺水现象发生,并在确定存在溺水现象发生时。湖北语音关键事件检测标准语音关键事件检测是未来语音识别和智能交互领域的重要研究方向之一。
上述步骤s302a可以为:步骤s302b:判断当前帧图像和在当前时刻之前的预设时长内采集到的连续多帧图像,是否均包含目标对象;如果是,执行上述步骤s303。在本实现方式中,在获取到当前帧图像后,电子设备便可以利用图像识别算法判断当前帧图像和在当前时刻之前的预设时长内采集到的连续多帧图像,是否均包含目标对象。其中,当判断结果为是时,电子设备可以确定存在用户进入目标防护舱,则在当前时刻,目标防护舱内可能发生异常事件,这样,电子设备便可以继续执行步骤s303。需要说明的是,在本实现方式中,电子设备可以采用任一能够检测出当前帧图像和在当前时刻之前的预设时长内采集到的连续多帧图像中是否均包含目标对象的图像识别算法执行上述步骤s302b,对此,本发明实施例不做具体限定。其中,上述预设时长可以为任一时长,例如,2s,5s等,这都是合理的。下面,对电子设备执行上述步骤s302b的具体过程进行说明:电子设备在获取到每帧关于目标防护舱的图像后,判断该图像中是否包含目标对象。进而,在获取该图像的下一帧图像后,判断该下一帧图像中是否包括与前一帧图像相同的目标对象。依次类推。
光流图检测模型为:采用各个第二样本图像和每个第二样本图像的事件检测结果所训练得到的模型,且每个第二样本图像为一帧光流图。需要说明的是,下面对上述步骤f23的具体实现方式进行举例说明。一种具体实现方式中,上述步骤f23可以包括如下步骤f231-f232:f231:根据场景图像检测模型和光流图检测模型的权重,计算场景图像检测模型输出的检测结果和场景图像检测模型的权重的乘积,并计算光流图检测模型输出的检测结果与光流图检测模型的权重的第二乘积;f232:计算乘积和第二乘积的和值,基于和值,确定关于目标防护舱的事件监测结果。在本实现方式中,当场景图像检测模型输出的检测结果和光流图检测模型输出的检测结果为:正常事件概率以及每种类型的异常事件的概率时,电子设备可以根据预设的场景图像检测模型的权重,计算场景图像检测模型输出的正常事件概率以及每种类型的异常事件的概率分别与该权重的乘积,作为正常事件以及每种类型的异常事件的乘积;并根据预设的光流图检测模型的权重,计算光路途检测模型输出的正常事件概率以及每种类型的异常事件的概率分别与该权重的乘积,作为正常事件以及每种类型的异常事件的第二乘积。进而,计算乘积和第二乘积的和值。语音关键事件检测技术可以帮助我们在海量的音频数据中快速找到感兴趣的部分,提高信息处理的效率。
便可以得到一个第二样本图像组及样本图像组的事件检测结果。实施例三:上述步骤f2,基于场景图像检测模型输出的检测结果,确定关于目标防护舱的事件检测结果,可以包括以下步骤f21-f23:步骤f21:将至少包含光流图在内的第二类图像确定为辅助图像,第二类图像中各个图像的类型均为:基于每两帧连续的关于所述目标防护舱且包括所述目标对象的图像获取的光流图,光流图为当前帧图像对应的光流图;步骤f22:将辅助图像输入到预设的光流图检测模型中,得到光流图检测模型输出的检测结果;其中,光流图检测模型为:采用各个第二样本图像组和每个第二样本图像组的事件检测结果所训练得到的模型,且每一第二样本图像组中的图像与待分析图像的图像数据相同,各个第二样本图像组中的图像为:关于防护舱的光流图;步骤f23:将场景图像检测模型输出的检测结果和光流图检测模型输出的检测结果进行融合计算,基于融合计算的结果,确定关于目标防护舱的事件检测结果。也就是说,在本实施例三中,可以同时利用场景图像检测模型对类图像进行检测,得到一个检测结果,利用光流图检测模型对第二类图像进行检测,得到另一个检测结果,进而,将两个检测结果进行融合计算,并基于融合计算的结果。智能语音质检都有什么功能?欢迎来电咨询!广州语音关键事件检测哪里买
语音关键事件检测算法的性能评估通常包括准确率、召回率和F1分数等指标。安徽数字语音关键事件检测
在本实现方式中,类图像为:当前帧图像和当前帧图像之前的连续m帧图像的多张图像,其中,m为正整数;或者,类图像为:当前帧图像。也就是说,在本实现方式中,电子设备可以将所获得的当前帧图像确定为待分析图像;此外,在获取到当前帧图像,并判断该当前帧图像包括目标对象后,电子设备可以判断所获取的关于目标防护舱的当前帧图像之前的连续m帧图像是否均包括目标对象,这样,便可以将当前帧图像和该m帧图像确定为待分析图像。这样,用于确定关于目标防护舱的事件检测结果的待分析图像为多张,可以更充分地反映目标防护舱内部空间的情况,进而提高事件检测的准确率。其中,m可以为任一正整数,例如,5,10等。s304:将待分析图像输入到预设的检测模型中,得到关于目标防护舱的事件检测结果;其中,检测模型为:基于各个样本图像和每个样本图像的事件检测结果所训练得到的模型。在确定待分析图像后,电子设备便可以将待分析图像输入到预设的检测模型中,得到关于目标防护舱的事件检测结果。具体的,在将待分析图像输入到预设的检测模型中后,电子设备可以得到预设的检测模型的输出结果,进而,根据该检测结果,电子设备便可以确定关于目标防护舱的事件检测结果。其中。安徽数字语音关键事件检测