作为人机交互领域重要的研究对象,语音识别技术已经成为信息社会不可或缺的组成部分。目前基于在线引擎和语音芯片实现的语音技术方案,其适用性和使用成本均限制了技术的应用和推广。通过对离线语音识别引擎的研究,结合特定领域内的应用特点,提出一套适用性强,成本较低的语音识别解决方案,可以在离线的网络环境中,实现非特定人的连续语音识别功能。根据本方案设计语音拨号软件,并对语音拨号软件的功能进行科学的测试验证。语音识别技术,又称为自动语音识别(AutomaticSpeechRecognition,ASR),它是以语音为研究对象,通过语音信号处理和模式识别让机器理解人类语言,并将其转换为计算机可输入的数字信号的一门技术。语音识别技术将繁琐的输入劳动交给机器处理,在解放人类双手的同时,还可以有效提高人机交互效率,信息化高度发达,已经成为信息社会不可或缺的组成部分。语音识别引擎是ASR技术的**模块,它可以工作在识别模式和命令模式。在识别模式下,引擎系统在后台提供词库和识别模板,用户无需对识别语法进行改动,根据引擎提供的语法模式即可完成既定的人机交互操作;但在命令模式下,用户需要构建自己的语法词典,引擎系统根据用户构建的语法词典。实时语音识别基于DeepPeak2的端到端建模,将音频流实时识别为文字,并返回每句话的开始和结束时间。海南语音识别率
语音文件“/timit/test/dr5/fnlp0/”的波形图、语谱图和标注SwitchBoard——对话式电话语音库,采样率为8kHz,包含来自美国各个地区543人的2400条通话录音。研究人员用这个数据库做语音识别测试已有20多年的历史。LibriSpeech——英文语音识别数据库,总共1000小时,采样率为16kHz。包含朗读式语音和对应的文本。Thchs-30——清华大学提供的一个中文示例,并配套完整的发音词典,其数据集有30小时,采样率为16kHz。AISHELL-1——希尔贝壳开源的178小时中文普通话数据,采样率为16kHz。包含400位来自中国不同口音地区的发音人的语音,语料内容涵盖财经、科技、体育、娱乐、时事新闻等。语音识别数据库还有很多,包括16kHz和8kHz的数据。海天瑞声、数据堂等数据库公司提供大量的商用数据库,可用于工业产品的开发。08语音识别评价指标假设"我们明天去动物园"的语音识别结果如下:识别结果包含了删除、插入和替换错误。度量语音识别性能的指标有许多个,通常使用测试集上的词错误率(WordErrorRate,WER)来判断整个系统的性能,其公式定义如下:其中,NRef表示测试集所有的词数量,NDel表示识别结果相对于实际标注发生删除错误的词数量,NSub发生替换错误的词数量。辽宁c语音识别语音识别技术开始与其他领域相关技术进行结合,以提高识别的准确率,便于实现语音识别技术的产品化。
需要及时同步更新本地语法词典,以保证离线语音识别的准度;(3)音频数据在离线引擎中的解析占用CPU资源,因此音频采集模块在数据采集时,需要开启静音检测功能,将首端的静音切除,不仅可以为语音识别排除干扰,同时能有效降低离线引擎对处理器的占用率;(4)为保证功能的实用性和语音识别的准度,需要在语音采集过程中增加异常处理操作。首先在离线引擎中需要开启后端静音检测功能,若在规定时间内,未收到有效语音数据,则自动停止本次语音识别;其次,需要在离线引擎中开启识别门限控制,如果识别结果未能达到所设定的门限,则本次语音识别失败;(5)通过语音识别接口,向引擎系统获取语音识别结果时,需要反复调用以取得引擎系统的识别状态,在这个过程中,应适当降低接口的调用频率,以防止CPU资源的浪费。2语音呼叫软件的实现语音呼叫软件广泛应用于电话通信领域,是一款典型的在特定领域内,实现非特定人连续语音识别功能的应用软件。由于其部署场景较多,部分场景处于离线的网络环境中,适合采用本方案进行软件设计。,语音识别准确率的高低是影响方案可行性的关键要素,离线引擎作为语音识别,它的工作性能直接关系到软件的可用性。本软件在实现过程中。
在识别时可以将待识别的语音的特征参数与声学模型进行匹配,得到识别结果。目前的主流语音识别系统多采用隐马尔可夫模型HMM进行声学模型建模。(4)语言模型训练语言模型是用来计算一个句子出现概率的模型,简单地说,就是计算一个句子在语法上是否正确的概率。因为句子的构造往往是规律的,前面出现的词经常预示了后方可能出现的词语。它主要用于决定哪个词序列的可能性更大,或者在出现了几个词的时候预测下一个即将出现的词语。它定义了哪些词能跟在上一个已经识别的词的后面(匹配是一个顺序的处理过程),这样就可以为匹配过程排除一些不可能的单词。语言建模能够有效的结合汉语语法和语义的知识,描述词之间的内在关系,从而提高识别率,减少搜索范围。对训练文本数据库进行语法、语义分析,经过基于统计模型训练得到语言模型。(5)语音解码和搜索算法解码器是指语音技术中的识别过程。针对输入的语音信号,根据己经训练好的HMM声学模型、语言模型及字典建立一个识别网络,根据搜索算法在该网络中寻找一条路径,这个路径就是能够以概率输出该语音信号的词串,这样就确定这个语音样本所包含的文字了。所以,解码操作即指搜索算法。一个完整的语音识别系统通常包括信息处理和特征提取、声学模型、语言模型和解码搜索四个模块。
Google将其应用于语音识别领域,取得了非常好的效果,将词错误率降低至。如下图所示,Google提出新系统的框架由三个部分组成:Encoder编码器组件,它和标准的声学模型相似,输入的是语音信号的时频特征;经过一系列神经网络,映射成高级特征henc,然后传递给Attention组件,其使用henc特征学习输入x和预测子单元之间的对齐方式,子单元可以是一个音素或一个字。,attention模块的输出传递给Decoder,生成一系列假设词的概率分布,类似于传统的语言模型。端到端技术的突破,不再需要HMM来描述音素内部状态的变化,而是将语音识别的所有模块统一成神经网络模型,使语音识别朝着更简单、更高效、更准确的方向发展。语音识别的技术现状目前,主流语音识别框架还是由3个部分组成:声学模型、语言模型和解码器,有些框架也包括前端处理和后处理。随着各种深度神经网络以及端到端技术的兴起,声学模型是近几年非常热门的方向,业界都纷纷发布自己新的声学模型结构,刷新各个数据库的识别记录。由于中文语音识别的复杂性,国内在声学模型的研究进展相对更快一些,主流方向是更深更复杂的神经网络技术融合端到端技术。2018年,科大讯飞提出深度全序列卷积神经网络(DFCNN)。
随着技术的发展,现在口音、方言、噪声等场景下的语音识别也达到了可用状态。辽宁c语音识别
语音识别的狭义语音识别必须走向广义语音识别,致力让机器听懂人类语言,才能将语音识别研究带到更高维度。海南语音识别率
人们在使用梅尔倒谱系数及感知线性预测系数时,通常加上它们的一阶、二阶差分,以引入信号特征的动态特征。声学模型是语音识别系统中为重要的部分之一。声学建模涉及建模单元选取、模型状态聚类、模型参数估计等很多方面。在目前的LVCSR系统中,普遍采用上下文相关的模型作为基本建模单元,以刻画连续语音的协同发音现象。在考虑了语境的影响后,声学模型的数量急剧增加,LVCSR系统通常采用状态聚类的方法压缩声学参数的数量,以简化模型的训练。在训练过程中,系统对若干次训练语音进行预处理,并通过特征提取得到特征矢量序列,然后由特征建模模块建立训练语音的参考模式库。搜索是在指定的空间当中,按照一定的优化准则,寻找优词序列的过程。搜索的本质是问题求解,应用于语音识别、机器翻译等人工智能和模式识别的各个领域。它通过利用已掌握的知识(声学知识、语音学知识、词典知识、语言模型知识等),在状态(从高层至底层依次为词、声学模型、HMM状态)空间中找到优的状态序列。终的词序列是对输入的语音信号在一定准则下的一个优描述。在识别阶段,将输入语音的特征矢量参数同训练得到的参考模板库中的模式进行相似性度量比较。海南语音识别率