纯粹从语音识别和自然语言理解的技术乃至功能的视角看这款产品,相对于等并未有什么本质性改变,变化只是把近场语音交互变成了远场语音交互。正式面世于销量已经超过千万,同时在扮演类似角色的渐成生态,其后台的第三方技能已经突破10000项。借助落地时从近场到远场的突破,亚马逊一举从这个赛道的落后者变为行业。但自从远场语音技术规模落地以后,语音识别领域的产业竞争已经开始从研发转为应用。研发比的是标准环境下纯粹的算法谁更有优势,而应用比较的是在真实场景下谁的技术更能产生优异的用户体验,而一旦比拼真实场景下的体验,语音识别便失去存在的价值,更多作为产品体验的一个环节而存在。语音识别似乎进入了一个相对平静期,在一路狂奔过后纷纷开始反思自己的定位和下一步的打法。语音赛道里的标志产品——智能音箱,以一种***的姿态出现在大众面前。智能音箱玩家们对这款产品的认识还都停留在:亚马逊出了一款产品,功能类似。
近年来,该领域受益于深度学习和大数据技术的进步。福建谷歌语音识别
我们可以用语音跟它们做些简单交流,完成一些简单的任务等等。语音识别技术的应用领域:汽车语音控制当我们驾驶汽车在行驶过程中,必须时刻握好方向盘,但是难免有时候遇到急事需要拨打电话这些,这时候运用汽车上的语音拨号功能的免提电话通信方式便可简单实现。此外,对汽车的卫星导航定位系统(GPS)的操作,汽车空调、照明以及音响等设备的操作,同样也可以用语音的方式进行操作。语音识别技术的应用领域:工业控制及医疗领域在工业及医疗领域上,运用智能语音交互,能够让我们解放双手,只需要对机器发出命令,就可以让其操作完成需要的任务。提升了工作的效率。语音识别技术在个人助理、智能家居等很多领域都有运用到,随着语音识别技术在未来的不断发展,语音识别芯片的不敢提高,给我们的生活带来了更大的便利和智能化。深圳量子语音识别标准实时语音识别就是对音频流进行实时识别。
技术和产业之间形成了比较好的正向迭代效应,落地场景越多,得到的真实数据越多,挖掘的用户需求也更准确,这帮助了语音识别技术快速进步,也基本满足了产业需求,解决了很多实际问题,这也是语音识别相对其他AI技术为明显的优势。不过,我们也要看到,语音识别的内涵必须不断扩展,狭义语音识别必须走向广义语音识别,致力于让机器听懂人类语言,这才能将语音识别研究带到更高维度。我们相信,多技术、多学科、多传感的融合化将是未来人工智能发展的主流趋势。在这种趋势下,我们还有很多未来的问题需要探讨,比如键盘、鼠标、触摸屏和语音交互的关系怎么变化?搜索、电商、社交是否再次重构?硬件是否逆袭变得比软件更加重要?产业链中的传感、芯片、操作系统、产品和内容厂商之间的关系又该如何变化?
数据化的“文字”更容易触发个人对信息的重视程度,有效避免信息的遗漏。会议纪要更准确。系统能够提供对与会人员发言内容的高保真记录,且可以通过文字定位并回听语音,达到声文对应,辅助记录人员更好的理解会议思想、提升纪要结论或纪要决议的准确度。数据安全性强。系统应用后能够降低对记录人员的要求,一名普通的人员在会后简单编辑即可出稿,不需要外聘速录人员,内部参与的员工也可控制到少,故只需做好设备的安全管控,就能有效保障会议信息安全。实现价值提高工作效率。系统的实时语音转写、历史语音转写等功能,能够辅助秘书及文员快速完成会议记录的整理、编制、校对、归档等工作,减少会议纪要的误差率,提升工作人员的工作质量和工作效率。会议安全性增强。系统采用本地化部署加语音转写引擎加密,确保会议数据安全,改变了传统会议模式的会议内容保密隐患问题。节约企业成本。系统的功能是实现语音实时转写、会议信息管理。可根据转写内容快速检索录音内容,提取会议纪要,实现便捷的会议录音管理,此技术可节约会议人力成本约50%。开启会议工作智能化。系统实现了会议管理与人工智能的接轨,为后续推动办公业务与人工智能、大数据的融合奠定了基础。更重要的是体现在世界范围内的各行各业在设计和部署语音识别系统时均采用了各种深度学习方法。
语音识别技术飞速发展,又取得了几个突破性的进展。1970年,来自前苏联的Velichko和Zagoruyko将模式识别的概念引入语音识别中。同年,Itakura提出了线性预测编码(LinearPredictiveCoding,LPC)技术,并将该技术应用于语音识别。1978年,日本人Sakoe和Chiba在前苏联科学家Vintsyuk的工作基础上,成功地使用动态规划算法将两段不同长度的语音在时间轴上进行了对齐,这就是我们现在经常提到的动态时间规整(DynamicTimeWarping,DTW)。该算法把时间规整和距离的计算有机地结合起来,解决了不同时长语音的匹配问题。在一些要求资源占用率低、识别人比较特定的环境下,DTW是一种很经典很常用的模板匹配算法。这些技术的提出完善了语音识别的理论研究,并且使得孤立词语音识别系统达到了一定的实用性。此后,以IBM公司和Bell实验室为的语音研究团队开始将研究重点放到大词汇量连续语音识别系统(LargeVocabularyContinuousSpeechRecognition,LVCSR),因为这在当时看来是更有挑战性和更有价值的研究方向。20世纪70年代末,Linda的团队提出了矢量量化(VectorQuantization。VQ)的码本生成方法,该项工作对于语音编码技术具有重大意义。语音识别的输入实际上就是一段随时间播放的信号序列,而输出则是一段文本序列。深圳量子语音识别标准
除了传统语音识别技术之外,基于深度学习的语音识别技术也逐渐发展起来。福建谷歌语音识别
语音识别包括两个阶段:训练和识别。不管是训练还是识别,都必须对输入语音预处理和特征提取。训练阶段所做的具体工作是收集大量的语音语料,经过预处理和特征提取后得到特征矢量参数,通过特征建模达到建立训练语音的参考模型库的目的。而识别阶段所做的主要工作是将输入语音的特征矢量参数和参考模型库中的参考模型进行相似性度量比较,然后把相似性高的输入特征矢量作为识别结果输出。这样,终就达到了语音识别的目的。语音识别的基本原理是现有的识别技术按照识别对象可以分为特定人识别和非特定人识别。特定人识别是指识别对象为专门的人,非特定人识别是指识别对象是针对大多数用户,一般需要采集多个人的语音进行录音和训练,经过学习,达到较高的识别率。基于现有技术开发嵌入式语音交互系统,目前主要有两种方式:一种是直接在嵌入式处理器中调用语音开发包;另一种是嵌入式处理器外扩展语音芯片。第一种方法程序量大,计算复杂,需要占用大量的处理器资源,开发周期长;第二种方法相对简单,只需要关注语音芯片的接口部分与微处理器相连,结构简单,搭建方便,微处理器的计算负担降低,增强了可靠性,缩短了开发周期。本文的语音识别模块是以嵌入式微处理器为说明。福建谷歌语音识别