电子元器件|光电子器件|通讯设备|仪器仪表
此外,慧视光电SpeedDP深度学习算法开发平台支持本地化服务器部署,数据敏感或对数据有保密需求的用户再也无需担心数据信息泄露的问题。目前慧视光电SpeedDP深度学习算法开发平台主要提供目标检测算法的开发功能,不同的用户可针对自己的业务场景进行AI算法的定制化开发以及算法模型的快速迭代优化。随着芯片性能的提升,跟踪设备的发展趋势是生成式人工智能也会在图像跟踪板上得到应用,使得识别率达到极大的提升,相关配套的整体设备性能也会得到质的提升。YOLO系列算法是目标识别领域很重要的技术之一。海南多系统适配图像标注
YOLO系列算法目前更新到YOLOv8。Yolo系列算法是典型的onestage算法,同样,在算法设计上也注重目标区域的检测以及特征的分类,这里目标区域的检测采用的是和图像区域分类定位的方式实现的。Yolo系列算法是一种比较成熟的目标检测算法框架,基于这种框架的算法还在不断地迭代中,当然解决的问题也越来越细化,比如候选区精度、比如小尺度检测等。基本上YoloV3及以上版本的算法可以在很多场景下得到现实应用。2023年1月,目标检测经典模型YOLO系列再添一个新成员YOLOv8,这是Ultralytics公司继YOLOv5之后的又一次重大更新。YOLOv8一经发布就受到了业界的广关注,成为了这几天业界的流量担当。上海自主可控图像标注产品大量的图像标注工作交给AI。
目标识别算法是一种深度学习算法,其聪明程度需要我们不断训练,这就得益于大量的图像标注,通过对车辆行驶环境的数据集的大量标注,能够让AI更加聪明,标注得越多,识别的精度就可能越高。但是大量的图像标注跟工作显然会耗费大量的时间精力。而慧视SpeedDP的出现很好地解决了这个问题。SpeedDP是一个深度学习AI算法训练开发平台,他能够通过现有的算法模型或者自训练一个算法模型,实现对新数据集的快速AI自动标注,以此反复,帮助使用者提升算法性能。能够有效节约大量的时间。
无人机在高速公路巡检中的作用越来越突出,特别是在十一黄金周这样的出行高峰,高速公路的安全和畅通至关重要。传统的巡检模式受到人力物力以及时空的限制,弊端很大,难以实现精细大面积的监控疏导。无人机灵活机动的特点则能够很好的弥补时空的局限,而想要进一步减少人力物力的付出,则需要打造智能化的无人机,通过AI赋能,让无人机更加聪明。打造智能化无人机可以在无人机吊舱的基础上加装高性能的AI图像处理设备,成都慧视开发的Viztra-HE030图像处理板凭借6.0TOPS的算力,用在十一黄金周这样的出行高峰期就能够很好地胜任工作,板卡采用了国产化芯片RK3588,在算法的赋能下,能够实现高效巡检。通过大量的多边形标注工作,能够更好的帮助我们提高算法模型的准确性和鲁棒性。
此前,九号电动车的自平衡技术一次次刷新人们的认知,而其中一款探索版车型,甚至加入了智能摄像头,能够识别行人、障碍物,自动规划行驶路线,达成自动驾驶的目的。很多人好奇这种怎么做到的,其实很简单,车辆内部摄像头安装了具备图像处理的传感器。这种传感器就是图像处理板,这类AI板卡在目标识别算法的赋能下,就能够对视野范围的物体进行AI分类识别,从而帮助车辆进行避障。像成都慧视开发的高性能AI图像处理板Viztra-HE030,采用的是RK3588开发而成,凭借其工业级的性能,6.0TOPS的算力,就能够在车辆行驶过程中的复杂环境下进行周边环境的快速AI识别分类。当然,算法的能力也十分关键,由于车辆行驶环境的不断变化,算法面临的识别画面也不断变化,如何精细的进行识别,关系到车辆的行驶安全。SpeedDP是一个基于瑞芯微的深度学习算法开发平台。福建图像标注功能
SpeedDP能够打造需要的算法模型。海南多系统适配图像标注
首先摄像机采用的是可见光高清摄像机,具备1920*1080的分辨率,系统视场31.11°×17.8°,其中搜索视场15.8°×15.8°(1080P像素)。而图像处理则采用慧视开发的RV1126高性能图像处理板,之所以采用这块板卡,一方面得益于其低功耗、微型外观的设计,非常契合“智慧眼”这样对于空间要求严格的应用场景;另一方面RV1126具备2.0TOPS的算力,在国产化方面也十分完整,安全性十足。两者结合,就能够形成重量不超过100g的“智慧眼”。在算法的作用下,能够达到≥50Hz的跟踪帧率,≥25Hz的检测帧率,实现捕获4m*4m目标超过800m、6m*6m目标超过1000m。这就是“机器狼”的智慧化措施,通过一个“小小的”“智慧眼”的加入,便能够让其实现许多自动化任务。随着技术的不断发展,“机器狼”的形态将会不断进步,满足更多多样化需求。海南多系统适配图像标注