电子元器件|光电子器件|通讯设备|仪器仪表
物联网技术自20世纪末提出以来,已经从简单的设备连接发展到复杂的智能系统。通过传感器、执行器和网络通信技术,物联网能够实现对物理世界的实时监控和控制。目前,物联网已广泛应用于智能家居、工业自动化、智慧城市、健康医疗等多个领域。随着5G、边缘计算等技术的发展,物联网的连接能力、数据处理速度和智能化水平不断提升。人工智能作为模拟和扩展人类智能的科学,已经从理论研究走向了实际应用。深度学习、自然语言处理、计算机视觉等技术的发展,使得机器能够执行图像识别、语言翻译、数据分析等复杂任务。人工智能的应用已经渗透到医疗、金融、教育、交通等多个行业,极大地提高了生产效率和生活质量。利用成都慧视推出的SpeedDP能够帮助训练AI算法。湖北安防AI智能技术
AI智能化检测是打造领域智慧建设的一大举措。通过在摄像头中植入视觉处理AI图像处理板,定制AI检测算法,就能够实现对物体的质量检测。在智能检测领域,图像处理板的性能和算法的精度则是影响检测效果的关键所在。不同行业的作业环境不同,对于图像处理板的性能需求也就不同。因此,需要根据实际情况选择合适的AI图像处理板。像工业生产中的质量检测,由于工业仪器的精密复杂,就需要高性能的AI图像处理板,通过大算力实现快速数据处理。成都慧视开发Viztra-HE030图像处理板就十分合适,工业级芯片RK3588的加持下,至高输出6.0TOPS的算力,足以满足工业检测需求。云南智慧小区AI智能方案**SpeedDP作为一个AI训练平台。
新疆地缘辽阔、日照丰富,因此是我国光伏储能发达的区域之一。为了保障光伏基地的正常运作,周期性的巡检必不可少,传统模式下需要人工一步一个脚印走出来,随着现在无人机的广落地应用,这种大面积大范围的巡检也迎来了效率的飞跃。光伏基地每隔一段地方就会有一个铁塔,这些“驻塔式”机巢就是无人机的“巢穴”,无人机从这里起飞,进行巡逻,再回到这里进行充电,循环往复。得益于智慧化的建设,这些巡检无人机有自主巡飞、自动巡检的能力,可完成以机巢为中心5公里范围内的输配电线路和变电设备网格化巡检任务。
无人机的迅猛发展,使得无人机的反制技术也水涨船高,常见的有电子干扰、无人机识别对抗等方式。后者采用图像识别技术,通过在无人机摄像头的基础上加装AI高性能图像处理板,在算法的作用下,就具备无人机识别的功能,为无人机对抗创造条件。由于无人机飞行速度极快,因此针对于这样环境下的AI识别需要“与众不同”的图像处理板。我们都知道,当视频帧率越高时,视频越能够体现画面细节信息,而图像识别算法正是逐帧进行识别,因此,摄像头捕捉到的画面细节越多,识别的精度就会越高。FPV识别算法用SpeedDP帮助提升精度。
目标识别算法是一种深度学习算法,其聪明程度需要我们不断训练,这就得益于大量的图像标注,通过对车辆行驶环境的数据集的大量标注,能够让AI更加聪明,标注得越多,识别的精度就可能越高。但是大量的图像标注跟工作显然会耗费大量的时间精力。而慧视SpeedDP的出现很好地解决了这个问题。SpeedDP是一个深度学习AI算法训练开发平台,他能够通过现有的算法模型或者自训练一个算法模型,实现对新数据集的快速AI自动标注,以此反复,帮助使用者提升算法性能。能够有效节约大量的时间。特殊目标的识别精度如何提高?贵州智慧视觉AI智能视觉
利用成都慧视推出的SpeedDP能够帮助训练跟踪算法。湖北安防AI智能技术
多目标跟踪是指在连续的图像中,通过目标检测算法识别出每一帧中的目标,并在时间上跟踪它们的位置和状态。但目标会不断发生尺度、形变、遮挡等变化,而且还会有目标出现和消失的情况,再加上视频采集端的相机所处环境可能受到外界影响导致抖动的情况(例如无人机高空检测),就会给多目标跟踪造成一定的困难。由于我们不能控制目标,所以只能从视频采集端维护跟踪的稳定性。因此,成都慧视针对于多目标检测跟踪抖动丢失的优化方法是:1.改进目标检测,使用更加鲁棒的目标检测算法。2.增强特征描述,利用深度学习提取更高级别的语义特征,这些特征对于小范围内的视角变化具有更好的不变性3.改进运动模型,在算法中加入对摄像头运动的估计,通过补偿摄像头运动来减小目标真实运动与预测之间的差距。4.数据关联策略,设计更灵活的数据关联算法,允许更大的距离阈值来匹配候选目标。湖北安防AI智能技术
成都慧视光电技术有限公司
联系人:张先生
联系手机:13971180728
联系电话:139-71180728
经营模式:贸易型
所在地区:四川省-成都市-武侯区
主营项目:电子元器件|光电子器件|通讯设备|仪器仪表