便携手持在线综合局部放电|便携在线综合振动声学指纹|变压器断路器电缆高压试验|带电检测交接试验技术服务
利用 AFV 信号分析法监测 OLTC 状态时,需深入理解信号的产生与传播机制。OLTC 切换时,内部机构部件的运动撞击和摩擦是产生 AFV 信号的根源。这些脉冲冲击力通过变压器油这一介质,以振动波的形式传递到变压器箱壁。箱壁上的振动响应包含了 OLTC 内部多种激励现象的信息,就如同一个信息宝库。我们通过 AFV 传感器采集这些振动信号,并运用专业的分析算法,能够从中提取出与 OLTC 故障类型相关的特征参数。例如,当弹簧弹性下降时,振动信号的低频部分会出现特定的变化模式,依据这些模式,我们就能准确诊断出 OLTC 的故障类型,提前进行维修,避免故障扩大。GZAFV-01型声纹振动监测系统的基本功能。杭州GZPD-4D系列振动声纹
AFV 信号分析法在 OLTC 状态监测中的应用,基于对其内部故障与振动特性关系的深入研究。OLTC 内部触头在长期使用过程中,由于机械磨损和电气腐蚀,会出现接触电阻增大、触头压力不均匀等问题。这些问题会导致 OLTC 在切换时产生的脉冲冲击力发生变化,进而影响其振动特征。例如,当触头接触电阻增大时,切换瞬间产生的电弧能量增加,引起的振动信号幅值也会相应增大。通过 AFV 传感器对这些振动信号的监测和分析,我们可以准确判断 OLTC 是否存在触头相关故障,为设备的可靠运行提供有力保障。杭州国洲电力科技有限公司振动厂家现货杭州国洲电力科技有限公司振动声学指纹在线监测技术的行业合作案例。
能量分布曲线
基于小波变换的声纹振动信号多分辨率分析结果如下图3.8所示。原始信号经8层分解后产生第8层的近似分量和第1层至第8层的详细分量,计算各层详细分量信号能量,可获得信号能量分布曲线。比对正常状态与异常状态能量分布曲线,可判断OLTC运行状态,并提取互相关系数、最大值、平均值、峰度、偏度作为状态诊断特征参量。下图3.7为正常与异常状态的声纹振动信号能量分布曲线比对。
时频能量分布矩阵(ATF图谱)
获取声纹振动信号的时频能量分布矩阵,同时反映原始信号时域、频域特性及能量分布。将信号时频分布矩阵分为6个区间,计算各区间平均值作为特征参量,用于OLTC正常状态与异常状态比对。下图3.9为正常状态下声纹振动信号时频能量矩阵。
利用 AFV 信号分析法对 OLTC 进行状态监测,需要建立完善的信号分析体系。OLTC 在运行过程中产生的振动信号是复杂的,受到多种因素的影响。我们需要通过对大量正常和故障状态下的 OLTC 振动信号进行采集和分析,建立起故障类型与信号特征之间的数据库。例如,针对触头接触不良、触头磨损、弹簧弹性下降等不同故障类型,分别确定其对应的振动信号特征模式。在实际监测中,将采集到的 OLTC 振动信号与数据库中的模式进行比对,通过模式识别技术准确判断 OLTC 的故障类型和状态,实现对 OLTC 的智能化监测和管理。GZAFV-01型便携式变压器声纹振动 监测与诊断系统相关标准。
AFV 信号分析法基于对 OLTC 振动特性的研究来判断其状态。OLTC 内部触头在频繁的分 / 合切换过程中,由于机械应力、化学腐蚀以及触头材料的消耗,不可避免地会出现凹凸不平和变形的情况。这种变化直接导致触头压力、接触电阻和开矩参数发生改变,进而使得 OLTC 的振动特征产生明显变化。比如,触头磨损严重时,振动信号的高频成分会增加,信号的稳定性变差。通过 AFV 传感器持续监测这些振动特征的改变,我们就可以准确判断 OLTC 是否处于故障状态,及时采取相应措施,保障电力系统的稳定运行。GZAFV-06T型便携式变压器声纹振动 监测与诊断系统基本功能。国洲电力振动好选择
杭州国洲电力科技有限公司振动声学指纹在线监测功能的实时数据分析能力。杭州GZPD-4D系列振动声纹
AFV 信号分析法在 OLTC 状态监测中的应用,能够有效提高电力系统的可靠性和稳定性。OLTC 作为电力系统中的重要设备,其运行状态直接影响到电力的传输和分配。当 OLTC 出现故障时,如触头接触不良可能导致电弧产生,进而引发设备损坏和电力中断。AFV 传感器通过实时监测 OLTC 的振动信号,能够及时发现这些潜在故障。一旦检测到异常信号,系统可以迅速发出警报,并通过对信号的分析确定故障类型和位置,为维修人员提供准确的信息,缩短维修时间,减少电力系统的停电时间,保障电力供应的连续性和稳定性。杭州GZPD-4D系列振动声纹
杭州国洲电力科技有限公司
联系人:汤总
联系手机:18667001668
联系电话:0571-88122872
经营模式:生产型
所在地区:浙江省-杭州市-余杭区
主营项目:便携手持在线综合局部放电|便携在线综合振动声学指纹|变压器断路器电缆高压试验|带电检测交接试验技术服务