大多数GPU用于什么用途?#对于使用私有云(CoreWeave、Lambda)的公司,或拥有数百或数千台H100的公司,几乎都是LLM和一些扩散模型工作。其中一些是对现有模型的微调,但大多数是您可能还不知道的从头开始构建新模型的新创业公司。他们正在签订为期3年、价值1000万至5000万美元的合同,使用几百到几千台GPU。对于使用带有少量GPU的按需H100的公司来说,其LLM相关使用率可能仍>50%。私有云现在开始受到企业的青睐,这些企业通常会选择默认的大型云提供商,但现在大家都退出了。大型人工智能实验室在推理还是训练方面受到更多限制?#取决于他们有多少产品吸引力!SamAltman表示,如果必须选择,OpenAI宁愿拥有更多的推理能力,但OpenAI在这两方面仍然受到限制。H100 GPU 配备 80GB 的 HBM2e 高带宽内存。xfusionH100GPU购买
H100 GPU 还具备强大的扩展性,支持多 GPU 配置。通过 NVIDIA NVLink 技术,用户可以将多块 H100 GPU 连接在一起,形成一个强大的计算集群。NVLink 提供高带宽、低延迟的 GPU 互连,确保多 GPU 系统中的数据传输高效、稳定。这种扩展性使得 H100 GPU 可以灵活应对不同规模的计算需求,从单节点应用到大规模分布式计算环境,都能够提供出色的性能和效率。在软件支持方面,H100 GPU 配套了 NVIDIA 全的开发工具和软件生态系统。NVIDIA 提供了包括 CUDA Toolkit、cuDNN、TensorRT 等在内的多种开发工具,帮助开发者在 H100 GPU 上快速开发和优化应用。此外,H100 GPU 还支持 NVIDIA 的 NGC(NVIDIA GPU Cloud)容器平台,开发者可以通过 NGC 轻松获取优化的深度学习、机器学习和高性能计算容器,加速开发流程,提升应用性能和部署效率。80GH100GPU价格H100 GPU 提供高效的技术支持。
增加了一个称为线程块集群(ThreadBlockCluster)的新模块,集群(Cluster)是一组线程块(ThreadBlock),保证线程可以被并发调度,从而实现跨多个SM的线程之间的**协作和数据共享。集群还能更有效地协同驱动异步单元,如张量内存***(TensorMemoryAccelerator)和张量NVIDIA的异步事务屏障(“AsynchronousTransactionBarrier”)使集群中的通用CUDA线程和片上***能够有效地同步,即使它们驻留在单独的SM上。所有这些新特性使得每个用户和应用程序都可以在任何时候充分利用它们的H100GPU的所有单元,使得H100成为迄今为止功能强大、可编程性强、能效高的GPU。组成多个GPU处理集群(GPUProcessingClusters,GPCs)TextureProcessingClusters(TPCs)流式多处理器(StreamingMultiprocessors,SM)L2CacheHBM3内存控制器GH100GPU的完整实现8GPUs9TPCs/GPU(共72TPCs)2SMs/TPC(共144SMs)128FP32CUDA/SM4个第四代张量/SM6HBM3/HBM2e堆栈。12个512位内存控制器60MBL2Cache第四代NVLink和PCIeGen5H100SM架构引入FP8新的Transformer引擎新的DPX指令H100张量架构专门用于矩阵乘和累加(MMA)数学运算的高性能计算,为AI和HPC应用提供了开创性的性能。
每个GPU实例在整个内存系统中都有单独的和孤立的路径--片上的交叉开关端口、L2缓存库、内存控制器和DRAM地址总线都是分配给单个实例的。这保证了单个用户的工作负载可以以可预测的吞吐量和延迟运行,具有相同的L2缓存分配和DRAM带宽,即使其他任务正在冲击自己的缓存或使其DRAM接口饱和。H100MIG改进:提供完全安全的、云原生的多租户、多用户的配置。Transformer引擎Transformer模型是当今从BERT到GPT-3使用的语言模型的支柱,需要巨大的计算资源。第四代NVLink和NVLink网络PCIe以其有限的带宽形成了一个瓶颈。为了构建强大的端到端计算平台,需要更快速、更可扩展的NVLink互连。NVLink是NVIDIA公司推出的高带宽、高能效、低延迟、无损的GPU-to-GPU互连。其中包括弹性特性,如链路级错误检测和数据包重放机制,以保证数据的成功传输。新的NVLink为多GPUIO和共享内存访问提供了900GB/s的总带宽,为PCIeGen5提供了7倍的带宽。A100GPU中的第三代NVLink在每个方向上使用4个差分对(4个通道)来创建单条链路,在每个方向上提供25GB/s的有效带宽,而第四代NVLink在每个方向上使用2个高速差分对来形成单条链路,在每个方向上也提供25GB/s的有效带宽。引入了新的NVLink网络互连。H100 GPU 提供高效的数据分析能力。
我理解的就是这些等待的线程在等待的时候无法执行其他工作)也是一个分裂的屏障,但不对到达的线程计数,同时也对事务进行计数。为写入共享内存引入一个新的命令,同时传递要写入的数据和事务计数。事务计数本质上是对字节计数异步事务屏障会在W**t命令处阻塞线程,直到所有生产者线程都执行了一个Arrive,所有事务计数之和达到期望值。异步事务屏障是异步内存拷贝或数据交换的一种强有力的新原语。集群可以进行线程块到线程块通信,进行隐含同步的数据交换,集群能力建立在异步事务屏障之上。H100HBM和L2cache内存架构HBM存储器由内存堆栈组成,位于与GPU相同的物理封装上,与传统的GDDR5/6内存相比,提供了可观的功耗和面积节省,允许更多的GPU被安装在系统中。devicememory:驻留在HBM内存空间的CUDA程序访问的全局和局部内存区域constantcache:驻留在devicememory内的不变内存空间texturecache:驻留在devicememory内的纹理和表面内存空间L2cache:对HBM内存进行读和写servicesmemory请求来源于GPU内的各种子系统HBM和L2内存空间对所有SM和所有运行在GPU上的应用程序都是可访问的。HBM3或HBM2eDRAM和L2缓存子系统都支持数据压缩和解压缩技术。H100 GPU 具备高效的数据传输能力。xfusionH100GPU购买
H100 GPU 降价特惠,先到先得。xfusionH100GPU购买
利用 NVIDIA H100 Tensor GPU,提供所有工作负载前所未有的效能、可扩展性和安全性。 使用 NVIDIA® NVLink® Switch 系统,比较高可连接 256 个 H100 来加速百万兆级工作负载,此外还有的 Transformer Engine,可解决一兆参数语言模型。 H100 所结合的技术创新,可加速大型语言模型速度,比前一代快上 30 倍,提供业界的对话式人工智能。英伟达 DGX SuperPOD架构采用英伟达的NVLink和NVSwitch系统,多可连接32个DGX节点,共256个H100 GPU。这是一个真正的人工智能基础设施平台;英伟达的DGX SuperPOD数据中心设计[4]让我们对真正的企业人工智能基础设施的巨大功率和冷却需求有了一些了解。xfusionH100GPU购买